Back to Yung Yi, Courses

Introduction

A graduate-level course on the analysis of complex networks based on the randomized algorithm analysis techniques. Lectured by Prof. Yung Yi, KAIST, South Korea (spring13, spring16).


Textbook

Epidemics and Rumours in Complex Networks, by Moez Draief and Laurent Massoulie

images/complex_book.jpg

Note

모든 녹화 강의는 한글로 진행되었고, YouTube에 업로드 되었습니다(14.Epidemics on general graphs 제외). 본 강의에서는 고급 확률적 분석 기술 (randomized algorithm, branching process, Stein-chen method, Martingale, Azuma-Hoeffding inequality, Kurtz theorem, coupling 등등)을 이용하여 복잡계 네트워크에서 epidemics에 관한 여러 알려진 현상을 수학적으로 기술해보고, 끝까지 증명해 보는 수업이었습니다.

본 수업을 통해서 다시 한번 느꼈던 점은, 논문을 많이 읽는 것도 중요하지만, 모델링과 분석을 주요 목적으로 하는 연구의 경우, 핵심 수학적 증명을 완결성있게 끝까지 해보는 것이 연구에 얼마나 중요한지 대학원생들과 같이 느꼈습니다.

본 수업 이후 대학원생들이 재미있고 나름대로 깊이가 있는 논문을 많이 작성하였고 (Sigmetrics, Infocom, ICML, AISTATS 등등), 그 점에 대해서 보람과 감사를 느끼고 있습니다. 본 강의자료는 오랫동안 LANADA 내부에서 신입생 교육 및 학술 논문 준비 자료로 활용되어 왔습니다.

Contents   Videos  Materials  
1. Introduction to Complex Network
  • Part 1: Intro to complex network and what this course is about. Youtube
  • Lecture notes
  • Many from Moez Draief's slides.
  • 2. Erdős–Rényi (ER) graph
  • Part 1: The most basic random graph. Youtube
  • Lecture notes
  • 3. Galton-Watson branching process
  • Part 1: Definition and depth-first exploration. Youtube
  • Part 2: Breadth-first exploration and phase transition. Youtube
  • Part 3: One-by-one exploration. Youtube
  • Lecture notes
  • 4. Chernoff bound
  • Part 1: Boudning the probability of rare events. Youtube
  • Lecture notes
  • 5. Emergence of giant components
  • Part 1: Subscritical regime. Youtube
  • Part 2: Supercritical regime. Youtube
  • Part 3: Critical regime. Youtube
  • Lecture notes
  • 6. Connectivity and Poisson approximation
  • Part 1: Story on the big picture. Youtube
  • Part 2: Convergence of random variables Youtube
  • Part 3: Poisson approximation (Stein-Chen method) Youtube
  • Part 4: When nodes are connected in ER-graphs Youtube
  • Lecture notes
  • 7. Diameter of ER graphs
  • Part 1: Main results, meaning, and proof steps Youtube
  • Part 2: Proof step 1 Youtube
  • Part 3: Proof step 2 Youtube
  • Lecture notes
  • 8. Small world I: Strogatz and Watts
  • Part 1: Result, meaning, and proof steps Youtube
  • Part 2: Martingale and Azuma-Hoeffding inequality Youtube
  • Part 3: Proof Youtube
  • Lecture notes
  • Martingale and Azuma Hoeffding inequality, pdf, pptx
  • 9. Small world II: Kleinberg
  • Part 1: Result and meaning Youtube
  • Part 2: Theorem statement and proof step 1 Youtube
  • Part 3: Proof step 2 Youtube
  • Lecture notes
  • 10. Background: Markov chain (MC)
  • Part 1: Discrete time MC Youtube
  • Part 2: Continuous time MC, Embedded MC Youtube
  • Lecture note 1, Lecture note 2
  • 11. From micro to macro dynamics
  • Part 1: Story, functional LLN, Kurtz theorem Youtube
  • Part 2: Using Kurtz theorem, understanding SIS epidemics Youtube
  • Part 3: Doob's inequality, Gronwall's lemma, Kurtz thm proof Youtube
  • Lecture notes
  • Functional LLN and M/M/1 fluid model
  • 12. Power laws via preferential attachment
  • Part 1: Preferential attachment (PA) algorhm Youtube
  • Part 2: Power-law degree distribution and heavy-tail behavior Youtube
  • Part 3: PA --> power-law degree distribution, Proof steps Youtube
  • Part 4: Coupling technique (guest lecture by Jiin Woo) Youtube
  • Part 5: Proof of main results Youtube
  • Lecture notes
  • Coupling
  • 13. Influence maximization
  • Part 1: Viral marketing and influence maximization problem Youtube
  • Part 2: Proof step 1 Youtube
  • Part 3: Proof step 2 Youtube
  • Part 4: Proof step 3 Youtube
  • Lecture notes
  • Influce maximization
  • 14. Epidemics on general graphs
  • SIS (Susceptible-Infected-Susceptible)
  • SIR (Susceptible-Infected-Removed)
  • Lecture slides (pdf)
  • Lecture slides (pptx)
  • Made by Prof. Jungseul Ok at Postech.