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Spread over Social Network
• Diffusion by interaction among individuals

• New advertising opportunity via social network

Survey: 1,713 companies in USA [Salseforce 2015]

72% will increase cost for social marketing
78% have a dedicated social media team

70% believe social marketing is core

Online Social Network Services

Rumor OS Political PartySmartphoneVirus
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Outline
• Two Classical Epidemic Models

• S: susceptible, I: infected, R: removed
• SIR model (a.k.a. Reed-Frost model)
• SIS model

• Analysis in General Graphs
• Upper and lower bounds on degree of diffusion in terms of graph 

theoretic parameters and model parameters
• SIR model: spread size
• SIS model: extinction time

• Analysis in Specific Graphs
• Complete graph
• E-R graph, star-shaped graph, hypercube graph
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SIR Model, a.k.a. Reed-Frost Model

• Undirected graph 𝐺 = (𝑉, 𝐸)
• 𝑉: node set, 𝐸: edge set

• 𝑛 individuals, i.e., 𝑛 ∶= |𝑉|

• Epidemic dynamics

• Discrete-time model, i.e., 𝑡 ∈ {0, 1, 2, … }

• An infected node infects each of its susceptible neighbors w.p. 𝛽 indepently

• 𝑋 𝑡 = σ𝑣∈𝑉𝑋𝑣 𝑡 : number of infected nodes at time 𝑡

• 𝑌 𝑡 = σ𝑣∈𝑉 𝑌𝑣 𝑡 : number of removed nodes at time 𝑡

(S)usceptible (I)nfected (R)emoved

𝑤. 𝑝. 1 − ς𝑣~𝑢 1 − 𝛽𝑋𝑣 𝑡 𝑤. 𝑝. 1

𝑋𝑢 𝑡 = 0
𝑌𝑢 𝑡 = 0

𝑋𝑢 𝑡 + 1 = 1
𝑌𝑢 𝑡 + 1 = 0

𝑋𝑢 𝑡 + 2 = 0
𝑌𝑢 𝑡 + 2 = 1
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Analysis on SIR Model
• Degree of diffusion: spread size, i.e., 𝚬 𝑌 ∞

• Notations

• 𝐴: the adjacency matrix of 𝐺, i.e., 𝐴𝑢𝑣 = 1 if 𝑢, 𝑣 ∈ 𝐸

• 𝜌: the largest absolute eigenvalue of 𝐴, a.k.a. spectral radius

• 𝛽: the infection probability

• Note on spectral radius
• ∙ : operator norm for matrix, Euclidean norm for vector

• Large spectral radius means well-connected graph

𝐴 ∶= max
𝑥 =1

𝐴𝑥

= 𝜌 if 𝐴 is symmetric
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Analysis on SIR Model
• Degree of diffusion: spread size, i.e., 𝚬 𝑌 ∞

• Notations

• 𝐴: the adjacency matrix of 𝐺, i.e., 𝐴𝑢𝑣 = 1 if 𝑢, 𝑣 ∈ 𝐸

• 𝜌: the largest absolute eigenvalue of 𝐴, a.k.a. spectral radius

• 𝛽: the infection probability

• Result on general graph: An upper bound on the degree of diffusion
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Proof of Theorem 8.1 (1)
• Using the union bound for each path of infections with length 𝑡,

• Since the 𝑢𝑣-th entry of 𝐴𝑡 is the number of paths of length 𝑡,

• Since 𝛽𝐴 = 𝛽𝜌 < 1 and 𝐴 is symmetric, we can write 

σ𝑡=0
∞ 𝛽𝐴 𝑡 = 𝐼 − 𝛽𝐴 −1

𝐄 𝑌 ∞ = σ𝑣∈𝑉𝑷(𝑌𝑣 ∞ = 1)

≤ σ𝑣∈𝑉σ𝑡=0
∞ σ𝑢0,…,𝑢𝑡∶ 𝑢𝑖−1,𝑢𝑖 ∈𝐸,𝑢𝑡=𝑣

𝛽𝑡𝑋𝑢0 0

= σ𝑡=0
∞ σ𝑢∈𝑉 𝛽𝑡𝐴𝑡 𝑢𝑣𝑋𝑢 0

= σ𝑡=0
∞ 𝑒𝑇 𝛽𝐴 𝑡𝑋 0

//   𝑒 = 1,1, … . , 1 𝑇

𝑷 𝑋𝑣 𝑡 = 1 ≤ σ𝑢0,…,𝑢𝑡∶ 𝑢𝑖−1,𝑢𝑖 ∈𝐸,𝑢𝑡=𝑣
𝛽𝑡𝑋𝑢0 0
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Proof of Theorem 8.1 (2)
• By the Cauchy-Swartz inequality and the definition of the operator norm,

• Noting the spectral radius of 𝐼 − 𝛽𝐴 −1 is 1 − 𝛽𝜌 −1 and 𝐼 − 𝛽𝐴 −1 is 
symmetric, we have

𝐄 𝑌 ∞ = σ𝑡=0
∞ 𝑒𝑇 𝛽𝐴 𝑡𝑋 0

= 𝑒𝑇 𝐼 − 𝛽𝐴 −1𝑋 0

≤ 𝑒 𝐼 − 𝛽𝐴 −1𝑋 0 (∵Chachy-Swartz ineq.)

≤ 𝑒 𝐼 − 𝛽𝐴 −1 𝑋 0 (∵ Def. of operator norm)

= 𝐼 − 𝛽𝐴 −1 𝑛|𝑋(0)|

𝐼 − 𝛽𝐴 −1 = 1 − 𝛽𝜌 −1
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Proof of Theorem 8.1 (3)
• (Homework) Complete the proof of the second part

•  Now suppose graph 𝐺 is 𝑑-regular, i.e., σ𝑣∈𝑉𝐴𝑢𝑣 = 𝑑.

𝐄 𝑌 ∞ = σ𝑡=0
∞ 𝑒𝑇 𝛽𝐴 𝑡𝑋 0

= 𝑒𝑇 𝐼 − 𝛽𝐴 −1𝑋 0

=...
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Outline
• Two Classical Epidemic Models

• S: susceptible, I: infected, R: removed
• SIR model (a.k.a. Reed-Frost model)
• SIS model

• Analysis in General Graphs
• Upper and lower bounds on degree of diffusion in terms of graph 

theoretic parameters and model parameters
• SIR model: spread size
• SIS model: extinction time

• Analysis in Specific Graphs
• Complete graph
• E-R graph, star-shaped graph, hypercube graph
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SIS Model, e.g., flu

• Undirected graph 𝐺 = (𝑉, 𝐸)
• 𝑉: node set, 𝐸: edge set

• 𝑛 individuals, i.e., 𝑛 ∶= |𝑉|

• Continuous-time Markov chain with state space 0, 1 𝑛

• 0: susceptible, 1: infected

• Non-zero transition rate 𝑞(𝑥, 𝑦)

• A node can be infected and recover multiple times and the chain will absorb at 
all-0 state
 Degree of diffusion = extinction time, i.e., time to all-0 state denoted by 𝜏

Birth rate: 𝑞 𝑥, 𝑥 + 𝑒𝑖 = 𝛽 1 − 𝑥𝑖 σ𝑗~𝑖 𝑥𝑗
Death rate: 𝑞 𝑥, 𝑥 − 𝑒𝑖 = 𝑥𝑖
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Analysis on Fast Extinction of SIS Model (1)

• An upper bound on the extinction time 𝜏

• Note that 𝐏 𝑋 𝑡 ≠ 0 = 𝐏(𝜏 ≥ 𝑡)
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Analysis on Fast Extinction of SIS Model (2)

• An upper bound on the extinction time 𝜏

𝑡

Fast extinction!
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Analysis on Long Survival of SIS Model (1)

• An lower bound on the extinction time 𝜏

• Notation
• Isoperimetric constant 𝜂 𝑚 of graph 𝐺 given 𝑚

• Large 𝜂 𝑚 means that any 𝑘 (≤ 𝑚) nodes are highly influential
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Analysis on Long Survival of SIS Model (2)

• An lower bound on the extinction time 𝜏
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Analysis on Long Survival of SIS Model (3)

• An lower bound on the extinction time 𝜏

• Notations
• Isoperimetric constant 𝜂 𝑚 of graph 𝐺 given 𝑚

Proof) (Homework)
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Outline
• Two Classical Epidemic Models

• S: susceptible, I: infected, R: removed
• SIR model (a.k.a. Reed-Frost model)
• SIS model

• Analysis in General Graphs
• Upper and lower bounds on degree of diffusion in terms of graph 

theoretic parameters and model parameters
• SIR model: spread size
• SIS model: extinction time

• Analysis in Specific Graphs
• Complete graph
• E-R graph, star-shaped graph, hypercube graph
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SIR Model in Complete Graph (1)
• Suppose one node was initially infected, i.e., 𝑋 0 = 1

• Analysis1. a sufficient condition for small infection
• Noting complete graph is (𝑛 − 1)-regular graph, i.e., 𝜌 = 𝑛 − 1 , from the second part of 

Theorem 8.1, it directly follows that

If 𝛽 <
1

𝑛−1
, 𝐄 𝑌 ∞ ≤

1

1−𝛽 𝑛−1
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SIR Model in Complete Graph (2)
• Suppose one node was initially infected, i.e., 𝑋 0 = 1

• Analysis1. a sufficient condition for small infection
• Noting complete graph is (𝑛 − 1)-regular graph, i.e., 𝜌 = 𝑛 − 1 , from the second part of 

Theorem 8.1, it directly follows that

• Analysis2. a sufficient condition for large infection
• Recalling Theorem 2.1 (ii) (the giant component of E-R graph in supercritical regime), 

If 𝛽 <
1

𝑛−1
, 𝐄 𝑌 ∞ ≤

1

1−𝛽 𝑛−1
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SIS Model in Complete Graph
• Suppose one node was initially infected, i.e., 𝑋 0 = 1

• Analysis1. a sufficient condition for fast extinction
• Note that 𝜌 = 𝑛 − 1

• From Corollary 8.6, it follows that

• Analysis2. a sufficient condition for long survival
• Check that 𝜂 𝑚 = 𝑛 − 𝑚

• From Corollary 8.9, it follows that for given constant 𝑎 > 0, there exists a constant 𝑏 > 0
such that

If 𝛽 <
1

𝑛−1
, 𝐄 𝜏 ≤

log 𝑛+1

1−𝛽 𝑛−1

If 𝛽 >
1

𝑛−𝑛𝑎
, 𝐄 𝜏 ≥ exp 𝑏𝑛𝑎



21

Preliminary to Proof of Theorems 8.2&8.8

• Skip-free Markov jump process with state space ℕ𝐾

• Non-zero transition rate 𝑞 𝑥, 𝑦

• SIS model is a Markov jump process with the following birth and death rates

• Sketch of the proofs
• Consider an analytically tractable process 𝑋𝑏𝑟𝑤 𝑡 or 𝑍 𝑡

• Construct the coupling between the original process and the tractable process which 
provides a stochastic dominance

• Combine the analysis on the tractable process and the stochastic dominance

Birth rate: 𝑞 𝑥, 𝑥 + 𝑒𝑖 = 𝛽𝑖(𝑥)
Death rate: 𝑞 𝑥, 𝑥 − 𝑒𝑖 = 𝛿𝑖 𝑥

𝑞 𝑥, 𝑥 + 𝑒𝑖 = 𝛽 1 − 𝑥𝑖 σ𝑗~𝑖 𝑥𝑗
𝑞 𝑥, 𝑥 − 𝑒𝑖 = 𝑥𝑖

State space 0,1 𝑛

𝛽𝑖
𝑐 𝑥 = 𝟏𝑥𝑖=0𝛽σ𝑗~𝑖 𝑥𝑗

𝛿𝑖
𝑐 𝑥 = 𝑥𝑖

State space 0,1,2, … 𝑛
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Proof of Theorem 8.2 (1)
• Branching random walk process 𝑋𝑏𝑟𝑤 𝑡 on ℕ𝑛

• A skip-free Markov jump process with birth rate 𝛽𝑖
𝑏𝑟𝑤 𝑥 and death rate 𝛿𝑖

𝑏𝑟𝑤 𝑥

• Comparison of 𝑋𝑐 𝑡 with 𝑋𝑏𝑟𝑤 𝑡
• Lower birth rate and higher death rate 

 𝑋𝑏𝑟𝑤 𝑡 ≥𝑠𝑡 |𝑋
𝑐 𝑡 |

• Proof using the coupling technique

𝛽𝑖
𝑏𝑟𝑤 𝑥 = 𝛽σ𝑗~𝑖 𝑥𝑗

𝛿𝑖
𝑏𝑟𝑤 𝑥 = 𝑥𝑖

State space 0,1,2, … 𝑛

Branching random walk 𝑋𝑏𝑟𝑤 𝑡

𝛽𝑖
𝑐 𝑥 = 𝟏𝑥𝑖=0𝛽σ𝑗~𝑖 𝑥𝑗

𝛿𝑖
𝑐 𝑥 = 𝑥𝑖

State space 0,1,2, … 𝑛

SIS model 𝑋𝑐 𝑡

𝛽𝑖
𝑏𝑟𝑤 𝑥 = 𝛽σ𝑗~𝑖 𝑥𝑗 ≥ 𝛽𝑖

𝑐 𝑥 = 𝟏𝑥𝑖=0𝛽σ𝑗~𝑖 𝑥𝑗

𝛿𝑖
𝑏𝑟𝑤 𝑥 = 𝑥𝑖 ≤ 𝛿𝑖

𝑐 𝑥 = 𝑥𝑖
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Stochastic Dominance from Coupling

• Proof by coupling 𝑋 𝑡 (or 𝑋𝑐 𝑡 ) and 𝑋′ 𝑡 (or 𝑋𝑏𝑟𝑤 𝑡 ) as follows:

i.e., 𝑋 𝑡 ≤𝑠𝑡 |𝑋
′ 𝑡 |

Marginal transition rate of 𝑋 𝑡
𝑞 𝑥, 𝑥 + 𝑒𝑖 = σ𝑥′,𝑦′ 𝑞 𝑥, 𝑥′ , 𝑥 + 𝑒𝑖 , 𝑦

′ = 𝛽𝑖 𝑥

𝑞 𝑥, 𝑥 − 𝑒𝑖 = σ𝑥′,𝑦′ 𝑞 𝑥, 𝑥′ , 𝑥 − 𝑒𝑖 , 𝑦
′ = 𝛿𝑖 𝑥

Marginal transition rate of 𝑋′ 𝑡
𝑞 𝑥′, 𝑥′ + 𝑒𝑖 = 𝛽𝑖

′ 𝑥
𝑞 𝑥′, 𝑥′ − 𝑒𝑖 = 𝛿𝑖

′ 𝑥

If 𝑥𝑖 < 𝑥𝑖
′ If 𝑥𝑖 = 𝑥𝑖

′

A rigorous proof is provided in p.92-p.94 (Homework)
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Proof of Theorem 8.2 (2)
• The coupling construction with 𝑋𝑏𝑟𝑤 0 = 𝑋𝑐 0 = 𝑋 0 implies 𝑋𝑏𝑟𝑤 𝑡 ≥𝑠𝑡 𝑋

𝑐 𝑡 , 
i.e.,

• From the linear structure of the transition rates of the branching random walk,

• where exp 𝑋 = σ𝑘=0
∞ 1

𝑘!
𝑋𝑘

• See https://en.wikipedia.org/wiki/Matrix_differential_equation for details

• By the Cauchy-Schwarz inequality, 

𝐏 𝑋𝑐 𝑡 ≠ 0 ≤ 𝐏 𝑋𝑏𝑟𝑤 𝑡 ≠ 0

≤ 𝑒𝑇𝐄 𝑋𝑏𝑟𝑤 𝑡

thus

𝐏 𝑋𝑐 𝑡 ≠ 0 ≤ 𝑒𝑇𝐄 𝑋𝑏𝑟𝑤 𝑡 = 𝑒𝑇 exp 𝑡 𝛽𝐴 − 𝐼 𝑋 0

≤ 𝑒 exp 𝑡 𝛽𝐴 − 𝐼 𝑋 0

https://en.wikipedia.org/wiki/Matrix_differential_equation
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Proof of Theorem 8.2 (3)
• Recalling the operator norm of a symmetric matrix is its spectral radius,

• Summary of the proof
• Consider the analytically tractable process 𝑋𝑏𝑟𝑤 𝑡

• Construct the coupling between 𝑋𝑏𝑟𝑤 𝑡 and 𝑋𝑐 𝑡 providing the stochastic dominance

• Combine the analysis on 𝑋𝑏𝑟𝑤(𝑡) and the stochastic dominance to provide an upper bound 
of 𝐏(𝜏 ≥ 𝑡)

• Note) The proof of Theorem 8.8 will be similar to this proof but we are interested in a lower 
bound of 𝐏 𝜏 ≥ 𝑡 in Theorem 8.8

𝐏 𝑋𝑐 𝑡 ≠ 0 ≤ 𝑒 exp 𝑡 𝛽𝐴 − 𝐼 𝑋 0

≤ 𝑒 exp 𝑡 𝛽𝜌 − 1 𝑋 0

= 𝑛σ𝑖=1
𝑛 𝑋𝑖

2 0 exp 𝛽𝜌 − 1 𝑡

= 𝑛σ𝑖=1
𝑛 𝑋𝑖 0 exp 𝛽𝜌 − 1 𝑡
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Proof of Theorem 8.8 (1)
• Consider the Markov jump process 𝑍 𝑡 on {0,1, … ,𝑚}, with non zero 

transition rates as follows:

• Construct the joint process (or coupling) (𝑋, 𝑍) on { 𝑥, 𝑧 ∈ 0,1 𝑛 ×
0,… ,𝑚 , 𝑧 ≤ σ𝑖=1

𝑛 𝑥𝑖} with non-zero rates in the following:

𝑞 𝑧, 𝑧 + 1 = 𝑟−1 𝑧 𝟏𝑧<𝑚
𝑞 𝑧, 𝑧 − 1 = 𝑧

If σ𝑖=1
𝑛 𝑥𝑖 > 𝑧 If σ𝑖=1

𝑛 𝑥𝑖 = 𝑧

Marginal transition rate of 𝑋 𝑡
𝑞 𝑥, 𝑥 + 𝑒𝑖 = σ𝑥′,𝑦′ 𝑞 𝑥, 𝑥′ , 𝑥 + 𝑒𝑖 , 𝑦

′

= 𝛽 1 − 𝑥𝑖 σ𝑗~𝑖 𝑥𝑗
𝑞 𝑥, 𝑥 − 𝑒𝑖 = 𝑥𝑖

Marginal transition rate of 𝑍 𝑡

𝑞 𝑧, 𝑧 + 1 = ൝
𝑟−1 𝑧 𝟏𝑧<𝑚 if σ𝑖=1

𝑛 𝑥𝑖 > 𝑧

σ𝑖=1
𝑛 𝑐𝑖 𝑥 if σ𝑖=1

𝑛 𝑥𝑖 = 𝑧

𝑞 𝑧, 𝑧 − 1 = 𝑧
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Proof of Theorem 8.8 (2)
• We need to show the existence of 𝑐𝑖(𝑥) such that

• i) Transition rate is non-negative

• ii) Marginal transition rate of 𝑍 𝑡

• To show the existence of 𝑐𝑖 𝑥 , it is enough to show

• Let 𝑆 denote the set of nodes 𝑗 ∈ {1, … , 𝑛} such that 𝑥𝑗 = 1

• Then, σ𝑖=1
𝑛 𝛽 1 − 𝑥𝑖 σ𝑗~𝑖 𝑥𝑗 = 𝛽𝐸 𝑆, ҧ𝑆

• Note that 𝑆 = σ𝑗 𝑥𝑗 = 𝑧 ≤ 𝑚

• Hence, by the definition of isoperimetric constant and the assumption on 𝑟, 

𝛽
𝐸(𝑆, ҧ𝑆)

|𝑆|
≥ 𝛽𝜂 𝑚 ≥ 𝑟−1
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Proof of Theorem 8.8 (3)
• From the construction of coupling 𝑋, 𝑍 , it follows that

• To evaluate the right-hand side, consider the discrete-time Markov chain 
𝑌 𝑘 keeping track of the states visited by process 𝑍 𝑡

• Let 𝜋𝑘′ denote the probability that starting from state 𝑘′ ∈ {0,… ,𝑚}, the 
chain 𝑌 𝑘 hits 𝑚 before it is absorbed at 0

𝑃 𝜏 > 𝑠 ≥ 𝑃(𝑍 𝑠 = 0)

 𝜋𝑘 =
1−𝑟𝑘

1−𝑟𝑚
(Homework)
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Proof of Theorem 8.8 (4)
• Then, we have

• Also, after each entrance into state m, process 𝑍 𝑡 remains there for an 

exponentially distributed random time, with mean 
1

𝑚
. Thus, if follows that

• where the random variables 𝐸𝑖 are i.i.d., exponentially distributed with mean 1

• From Chernoff’s Lemma 1.8,

• The term exp −𝑠ℎ𝑒𝑥𝑝
1

2
is clearly 𝑜 𝑠−1

𝑃 𝑌 𝑘 𝑘≥0 visits state 𝑚 at least 𝑠 times ≥
1 − 𝑟

1 − 𝑟𝑚
1 − 𝑟𝑚−1

1 − 𝑟𝑚

𝑠

where
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Homework

• Prove the second part of Theorem 8.1

• Prove Corollary 8.9

• Prove Theorem 8.4

• Show  𝜋𝑘 =
1−𝑟𝑘

1−𝑟𝑚


