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ﬁ Survey: 1,713 companies in USA [Salseforce 2015]
Online Social Network Services 72% will increase cost for social marketing

78% have a dedicated social media team
70% believe social marketing is core
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* Two Classical Epidemic Models
* S:susceptible, I: infected, R: removed
* SIR model (a.k.a. Reed-Frost model)
e SIS model

e Analysis in General Graphs

* Upper and lower bounds on degree of diffusion in terms of graph
theoretic parameters and model parameters

* SIR model: spread size
* SIS model: extinction time

* Analysis in Specific Graphs
* Complete graph
* E-R graph, star-shaped graph, hypercube graph



SIR MOdE‘, a.k.a. Reed-Frost Model

* Undirected graph G = (V,E)
 /:node set, E: edge set
* nindividuals,i.e., n := |V|

* Epidemic dynamics

* Discrete-time model,i.e., t €{0,1,2,...}
* An infected node infects each of its susceptible neighbors w.p. f indepently

w.p.1—[lpu(1 - BX,(®))  w.p.1

[(S)usceptible] [ ()nfected ] [ (R)emoved ]

X,t)=0 X,t+1) =1 X,(t+2)=0
Y,(t) =0 Y,t+1)=0 Y, t+2)=1

o | X(t)| = X, ey Xy, (t): number of infected nodes at time t
o |[Y(t)| = Xpey Yy (t): number of removed nodes at time t



Analysis on SIR Model

* Degree of diffusion: spread size, i.e., E[|Y (c0)|]
* Notations
* A:the adjacency matrix of G, i.e., Ay, = 1if (u,v) €EE
* p:the largest absolute eigenvalue of A, a.k.a. spectral radius

* [:the infection probability

* Note on spectral radius

* ||I-|l: operator norm for matrix, Euclidean norm for vector
1Al := max || Ax|]
lIxII=1
=p if A is symmetric

» Large spectral radius means well-connected graph



Analysis on SIR Model

* Degree of diffusion: spread size, i.e., E[|Y (c0)]]

* Notations
* A:the adjacency matrix of G, i.e., Ay, = 1if (u,v) €EE
* p:the largest absolute eigenvalue of A, a.k.a. spectral radius
* [:the infection probability

e Result on general graph: An upper bound on the degree of diffusion

Theorem 8.1 Supposel Bp < 1] where p is the spectral radius of the adjacency

matrix A. Then the total number |Y(0)| of nodes removed satisfies

=5, VX,

where |X(0)| is the number of initial infectives.

E[[Y(e0)[] <

Ifthe graph G is regular (i.e. each node has the same number of neighbours)
with node degree d, then

1
IX(0)] = [——51X(O)]

E[IY(e)] < 7 e




Proof of Theorem 8.1 (1)

* Using the union bound for each path of infections with length ¢,

P(Xv(t) = 1) < Zuo’.__,ut:(ui_l,ui)EE,ut=v ﬁtX‘u,O (0)

Since the uv-th entry of At is the number of paths of length t,

E[|Y(0)[] = Xpey P(Yy(0) = 1)
< Divev 2t=0 Dug,.. up: (s g 1) EE U =v Bt Xy, (0)
= X0 Zuev (BAD) 1y Xy, (0)
= YZoe' (BA)X(0)
[l e=(11,..,1D"

« Since ||BA|l = Bp < 1 and A is symmetric, we can write

Xizo(BA) = (I - A~



Proof of Theorem 8.1 (2)

* By the Cauchy-Swartz inequality and the definition of the operator norm,

E[[Y ()] = ZtZoe" (BA)*X(0)
=eT(I — BA)1X(0)
< lellll(I = pA)~1Xx(0)]] (*Chachy-Swartz ineq.)
< |lellll(I = BA)~LIIIX(0)|| (- Def. of operator norm)

= (I = BA)llyn|X(0)]

* Noting the spectral radius of (I — BA) " tis (1 — Bp) tand (I — BA)Lis
symmetric, we have

17— BATHI=(1 = Bp)~



Proof of Theorem 8.1 (3)

(Homework) Complete the proof of the second part

« > Now suppose graph G is d-regular, i.e., }.,ey Ayy = d.

E[|Y ()] = XtZoe’ (BA)X(0)
=eT(I — BA)1X(0)

Theorem 8.1 SupposdqBp < 1] where p is the spectral radius of the adjacency
matrix A. Then the total number |Y(o0)| of nodes removed satisfies

=5, VXl

where |X(0)| is the number of initial infectives.

E[[Y(e0)[] <

Ifthe graph G is regular (i.e. each node has the same number of neighbours)
with node degree d, then

1
IX(O)] =|——=51X(O)].

1
E V()] < 7 v




Outline

e Analysis in General Graphs

* Upper and lower bounds on degree of diffusion in terms of graph
theoretic parameters and model parameters

* SIR model: spread size
* SIS model: extinction time



SIS I\/Iode\, e.g., flu

* Undirected graph G = (V,E)
 V:node set, E: edge set
* nindividuals,i.e., n := |V|

» Continuous-time Markov chain with state space {0, 1}"
* 0:susceptible, 1: infected
* Non-zero transition rate q(x, y)

Birth rate: q(x, x + ¢;) = B(1 — x;) Xj; Xj
Death rate: q(x,x — e;) = x;

* A node can be infected and recover multiple times and the chain will absorb at
all-0 state
- Degree of diffusion = extinction time, i.e., time to all-0 state denoted by T



Analysis on Fast Extinction of SIS Model (1)

* An upper bound on the extinction time 7

Theorem 8.2 Let A denote the adjacency matrix of graph G, and p de-
note the spectral radius of this matrix. Then for any initial condition X(0) =
{X;(0)}i=1.n and all t > O, one has the following:

.....

P(X(?) # 0) < \/ n Z:‘:l X;(0) exp (8o — 1)f) | (8.4)

where X(t) := {X;(t)}1=1...n denotes the state of the contact process with pa-
rameter B, on graph G, at time t.

* Notethat P(X(t) #0) =P(t = t)



Analysis on Fast Extinction of SIS Model (2)

* An upper bound on the extinction time 7

Corollary 8.6 Consider the contact process on a finite graph G on n nodes,
with base infection rate B and arbitrary initial condition X(0) € {0,1}". Let T
denote the time to absorption at O by the process. Then, under the condition

Bp<1, (8.10)
where p is the spectral radius of the adjacency matrix of G, it holds that
1 +1 i .
E(1) < % . Fast extinction! (8.11)

Proof Write
E(r) = [ P(r>t)dt
= [T P(X() # 0)dt
< [;" min (1, nexp(—(1 — Bp)f) dt
=1+ [ nexp(~(1 - Bp)n) dt,
where t* = (logn)/(1 — Bp). We thus obtain

n o logn+1
[, P — o) = F

E(t) <1t +

13



Analysis on Long Survival of SIS Model (1)

* An lower bound on the extinction time t

* Notation
* Isoperimetric constant n(m) of graph G givenm
* Large n(m) means that any k (< m) nodes are highly influential

Definition 8.7 (Isoperimetric constant) For a graph G on the node set
{1,...,n}, and any integer m < n, the isoperimetric constant n(m) of graph
G is defined by

n(m) = min ES.S)

, 8.12
Sc{l,..nSl<m  |S] ( )

where S denotes the complementary set {1,...,n}\S, and E(S, T) denotes the
number of edges with one endpoint in set § and the other in set 7',



Analysis on Long Survival of SIS Model (2)

* An lower bound on the extinction time t

Theorem 8.8 Let a finite graph G on n nodes be given, and assume that for
some m < n and some r € (0, 1), it holds that

Bn(m) 2 (8.13)

?

~ | -

where n(m) denotes the isoperimetric constant of G. Then, denoting by T the
time to absorption of the contact process on G, for any initial condition X(0) #
0, it holds that:

P(T> s)> l—r (1-pm1L
S 2m/ 1—-Mm\ 1-rm

where the term o(s™") is independent of the model parameters.

)S (1-0(s™M), seN, (8.14)



Analysis on Long Survival of SIS Model (3)

* An lower bound on the extinction time t

* Notations
* Isoperimetric constant n(m) of graph G givenm

Corollary 8.9 Consider a sequence of finite graphs G, on n nodes, a base
infection rate B, and an integer m, > n®, where a is a fixed positive constant,

such that

1

Bun(ny, Gp) = - (8.17)

where r € (0,1) is fixed. Then, denoting by T, the time to extinction of the
contact process on G,, with parameter 3, it holds that

E(t,) > exp(bn?), (8.18)

for some positive constant b > Q.

Proof) (Homework)



Outline

e Two Classical Epidemic Models
e S:susceptible, I: infected, R: removed
* SIR model (a.k.a. Reed-Frost model)
* SIS model

e Analysis in General Graphs

* Upper and lower bounds on degree of diffusion in terms of graph
theoretic parameters and model parameters

* SIR model: spread size
e SIS model: extinction time

* Analysis in Specific Graphs
* Complete graph
* E-R graph, star-shaped graph, hypercube graph
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SIR Model in Complete Graph (1)

* Suppose one node was initially infected, i.e., | X(0)| = 1

* Analysisl. a sufficient condition for small infection

* Noting complete graph is (n — 1)-regular graph, i.e., p = (n — 1), from the second part of
Theorem 8.1, it directly follows that

1

1
It < Gy ElIY ()] = 30D

Theorem 8.1 Suppose Bp < 1, where p is the spectral radius of the adjacency
matrix A. Then the total number |Y(o0)| of nodes removed satisfies

E[|Y(00)|] <
Y@ < 7=

where |X(0)| is the number of initial infectives.
If the graph G is regular (i.e. each node has the same number of neighbours)

n|X(O)l,

with node degree d, then

1
IX(0)l = ——1X(0)I .

1
EY()] < 1 5

18



SIR Model in Complete Graph (2)

* Suppose one node was initially infected, i.e., | X(0)| = 1

* Analysisl. a sufficient condition for small infection

* Noting complete graph is (n — 1)-regular graph, i.e., p = (n — 1), from the second part of
Theorem 8.1, it directly follows that

E[|Y (o0)|] < m

* Analysis2. a sufficient condition for large infection
* Recalling Theorem 2.1 (ii) (the giant component of E-R graph in supercritical regime),

Theorem 8.11 Let y be the unique positive solution of y + ¢ ¥ = 1. Then,
as n — oo, the size of the lareest connected component in the random graph
G(n,pB) is (1 + o(1))yn, with probability going to 1 as n tends to infinity.

Theurem 8.12 Let G = (V, E) be the complete graph on n nodes, and let
—|for an arbitrary constant ¢ > 1. Then, the final size of the epidemic

E[|Y(c0)] > (1 +0(1))y*n |

for any | X(0)| = 1, where y > 0 solves y + e ¥ = 1. Moreover, |Y(c0)| =
O(log n) with probability 1 — . 19



SIS Model in Complete Graph

* Suppose one node was initially infected, i.e., | X(0)| = 1

* Analysisl. a sufficient condition for fast extinction
* Notethatp=(n—1)
* From Corollary 8.6, it follows that

logn+1

1
If B < oy E(7r) < T 8tn-D)

* Analysis2. a sufficient condition for long survival
* Checkthatn(m)=n—-m

* From Corollary 8.9, it follows that for given constant a > 0, there exists a constant b > 0
such that

1
(n—n%)’

If B >

E(t) = exp(bn?)

20



Preliminary to Proof of Theorems 8.2&8.8

* Skip-free Markov jump process with state space NX
* Non-zero transition rate q(x, y)

Birth rate: q(x, x + e;) = B;(x)
Death rate: q(x,x — e;) = 6;(x)

* SIS model is a Markov jump process with the following birth and death rates

State space {0,1}" State space {0,1,2, ... }"
aGx+e)=pU—-x) 3, | €D | BECO =1, 085,
q(x,x —e;) = x; 67 (x) = x;

» Sketch of the proofs
* Consider an analytically tractable process X?™ (t) or Z(t)

* Construct the coupling between the original process and the tractable process which
provides a stochastic dominance

* Combine the analysis on the tractable process and the stochastic dominance

21



Proof of Theorem 8.2 (1)

* Branching random walk process X?""(t) on N

« A skip-free Markov jump process with birth rate 2™ (x) and death rate 5™ (x)

Branching random walk X" (t) SIS model X€(t)
State space {0,1,2, ... }" State space {0,1,2, ... }"
,Bibrw(x) =p Zj~ixj Bi (x) = 1,,=0B Zj~ixj
8P (x) = x; 57 (x) = x;

 Comparison of X¢(t) with X" (t)
* Lower birth rate and higher death rate
ibrw(x) = ,321'~i Xj

8P (x) = x;

\%

Bi (x) = 1y =oB Xj~i X
57 (x) = x;

IA

> X" ()| =4 1XC(®)]
* Proof using the coupling technique



Stochastic Dominance from Coupling

Theorem 8.4 Consider two skip-free Markov jump processes X, X' defined
on the state space NX, with respective birth rates Bi(x), Bi(x) and death rates
5i(x), 8/(x), for xe NK and i e {1,..., K}

Assume that for all x,y € NX such that x < y (i.e. x; < y; forall i =
1,..., K1), the following holds:

Xi = y; = Bi(x) < Bi(y) and 6i(x) = &(y). (8.5)

Then, for initial conditions X(0) and X'(0) satisfyving X(0) < X'(0), one can
construct the two processes X, X' jointly so that for all t > (), the ordering is

preserved, that is X(1) < X'(1).

—>| ie, [X()]| <5 |X'(O)]

* Proof by coupling X(t) (or X¢(t)) and X'(t) (or X?™(t)) as follows:
If x; < x;

Marginal transition rate of X(t)
= Zx',y' CI((X.X'), (x + ei;Y')) = Bi(x) q(x’,x" +e;) = ﬁ{(x)

q(x,x + e;)

q((x,x'),(x + €;, x"))
qg((x, x"), (x, X" + ¢€;))
q((x, x'), (x — ¢;, X))
q((x, x), (x, X" — €))

If x; = x;
= Bi(x), ql(x, x'), (x + e, X' +e)) =pi(x),
=pi(x), q(x, x), (x, X" + ¢€;)) = pi(x) = Bi(x),
= 0i(x), q(x, x'),(x — e, X' — €)) =8I(x'),
= 0;(x") . g((x, x'), (x — e;, x')) = 6;i(x) — 6;(x") .

Marginal transition rate of X'(t)

qlc,x —e) =T q((,x), (x — e, y")) = §;(x) q(x',x" — ;) = 6;(x)

A rigorous proof is provided in p.92-p.94 (Homework)

23



Proof of Theorem 8.2 (2)

* The coupling construction with X?™(0) = X°(0) = X(0) implies X?™(t) >, X°(t),
l.e.,
P(X°(t) # 0) < P(XP™(¢) # 0)
<

eTE (XbT'W(t))
* From the linear structure of the transition rates of the branching random walk,

%E (X*™(1) = BAE (X*™(0) - E(X"™(0) thus E(X*™(0) = exp(t(BA — 1)) X(0)

« where exp(X) = Z,?=O%Xk

* See https://en.wikipedia.org/wiki/Matrix differential equation for details

* By the Cauchy-Schwarz inequality,

P(XC(t) # 0) < eTE(X"™(t)) = e” exp(t(B4 — 1))X(0)
< llelllexp(¢(BA — D)X (O

24


https://en.wikipedia.org/wiki/Matrix_differential_equation

Proof of Theorem 8.2 (3)

* Recalling the operator norm of a symmetric matrix is its spectral radius,

P(X°(t) # 0) < llell||exp(t(BA — D)X (0)|
< |lell|exp(t(Bp — D) |lIX (0)]]

= \/n Y1y X2(0) exp((Bp — Dt)
= /nX", X;(0) exp((Bp — Dt)

 Summary of the proof
* Consider the analytically tractable process X?™ (t)
* Construct the coupling between X?™ (t) and X€(t) providing the stochastic dominance

* Combine the analysis on Xbrw(t) and the stochastic dominance to provide an upper bound
of P(t > t)

* Note) The proof of Theorem 8.8 will be similar to this proof but we are interested in a lower
bound of P(t = t) in Theorem 8.8



Proof of Theorem 8.8 (1)

 Consider the Markov jump process Z(t) on {0,1, ..., m}, with non zero

transition rates as follows:

qiz,z+ 1) =r"1z1,.,

q(z,z—1) =z

Construct the joint process (or coupling) (X, Z) on {(x,z) € {0,1}" X

{0, ...,m},z < Y| x;} with non-zero rates in the following:

If e x>z

q((x,2),(x+e€;,2)) =p(1 —Xx;) XjuiXj,
q((x,2),(x —€,2) = x;,
q(x,2),(xz+ 1) =r'zl,,
g((x,2),(x,z—1)) =z.

Marginal transition rate of X(t)
q(x,x +e)) =X, q((x,x"), (x + e;,y")
=B(1—x;) XjeiXj

q(x,x —e;) = x;

q((x,2),(x+e,z+ 1)) =ci(x),

q(x,2),(x+€,2)  FHBU —X) ¥ % — (X))

f}((.r, Z)! (I — €, — 1)) = X .,

Marginal transition rate of Z(t)

(1) =T Zleem HXix >z
' i) i X, x =z
q(z,z—1) =z

26



Proof of Theorem 8.8 (2)

* We need to show the existence of c;(x) such that

* i) Transition rate is non-negative
0 < ¢;(x) < B(1 _xi-}Z_x:l,-, iell,....n,
j~i

* ii) Marginal transition rate of Z(t)

n

Zf-'c'(x) = r_lf.] T<m

i=1

 To show the existence of c;(x), it is enough to show

ib’(l - X;) Z X;j 21 7y -
i=1 i

* Let S denote the set of nodes j € {1, ...,n} such thatx; = 1

* Then, XL, B(1—x) X x; = BE (S,5)

* Notethat|S|=X;x;=z<m

* Hence, by the definition of isoperimetric constant and the assumption on r,

8 E(fs’ls) > B(m) = -1




Proof of Theorem 8.8 (3)

* From the construction of coupling (X, Z), it follows that

P(t>s) = P(Z(s) =0)

* To evaluate the right-hand side, consider the discrete-time Markov chain

Y (k) keeping track of the states visited by process Z(t)

_oyr
Cylr+y 141
¥y

PlYk+1)=y+1]|Y(k)=y)

PYk+ 1) =y—1|Yk)=y) = " oyell,....m—1},

_}'f.';+y Tt
PY(k+1)=m—-1|Yk)=m) =1,
P(Y(k+1)=0]|Y(k) =0) =1.

Let 7r,,» denote the probability that starting from state k' € {0,
chain Y (k) hits m before it is absorbed at 0

}T[_}ZI], ;rrm:I,(|+r}frk:r;rrm|+rrk |,k(“ ..... m ”,

1—rk

Homework —
( )> 4% 1_ym

..., m}, the



Proof of Theorem 8.8 (4)

* Then, we have

P{Y(k)} isits stat t least s times) > 1or (1-rm Ty
k>0 VISILS State m at least s times =1 _,m 1 —m

* Also, after each entrance into state m, process Z(t) remains there for an

: L : : 1 :
exponentially distributed random time, with mean —. Thus, if follows that

§ . . =1y
P(Z(s/2m) > 0) > P(Z E; > 5!’2) ]1_ _:n ( 11 _};4 )
Py

* where the random variables E; are i.i.d., exponentially distributed with mean 1

* From Chernoff’s Lemma 1.8,

P(Z:‘a} > ,,-;2) > cxp( Shexp(1/2)) where fexp(x) = supgeg (0x — log E(exp(6E))))
i=1 = SUPyeg (0x — log(1/(1 — 6)))
=x—1—-logx.

* The term exp (—Shexp (%)) is clearly o(s™1)



Homework

* Prove the second part of Theorem 8.1
* Prove Corollary 8.9
* Prove Theorem 8.4

e Show mo=0, ap=1, (1 + N = rag +mey, kell,..., m—1}, = 1y




