[Influence Maximization]

Viral Marketing & Influence Maximization

Word-of-mouth

• Social network plays a fundamental role as a medium for the spread of influence among its members.

Level of trust on different types of ads*

*source from Forrester Research and Intelliseek

Lanada

Viral Marketing

- Interests
 - Budget: Who?
 - Influence: How many?
 - Diffusion Efficiency (or marketing efficiency)
 - Diffusion Time: How long?
 - Diffusion Number: How many?
- Influence Maximization
 - Given graph G (V,E), select "k" vertices to maximize (expected) diffusion efficiency

Diffusion Model & Objective

Independent Cascade Model

- When node v becomes active, it has a single chance of activating each currently inactive neighbor w.
- The activation attempt succeeds with probability p_{vw}

Example

Stop!

Lanada

Independent Cascade Model

- Let U(C) denote the corresponding (random) set of ultimately activated nodes by active seed set C.
- U(C) is a random variable thus we want to maximize F(C) = E(|U(C)|) subject to |C| < k.

IF-MAX Problem

Maximize
$$F(C) := E(|U(C)|)$$

Subject to $|C| < k$

Problem Hardness & Efficient Approximation

Solving IF_MAX is NP-hard

• Theorem NP-hard.

IF_MAX is NP-hard for the Independent Cascade model.

– (sketch of proof)

A simplified version of influence maximization problem in IC model is equivalent to NP-hard <u>Set Cover</u> problem. Thus, the original influence maximization problem is NP-hard problem as its simplified version.

The simplified version of influence maximization problem:

- Consider seed set *C* with cardinality *k*.
- p_{ij} is 1 if *i* and *j* are connected. (or consider a sample path)
- Define C_i as coverage by node i in C.

Lanada