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Contents

e What kind of graph models are we going to use to
analyze a complex network?

e Could be many, but let’s first consider the simplest
one.

e ER Graph: Erdos-Rény Graph, also simply called a
random graph.
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ER Graph

e Denote the graph by G(n, p), where n and p are
parameters.

e Each edge is formed with probability p € (0,1)
independently of every other edge, and n is the
number of nodes.

e Let&,, be aBernoulli R.V. indicating the presence of
edge between two nodes u and v, where u, v are
some two nodes, i.e., §,, = 1 with probability p and
0 with probability 1 — p.

° Then,

E[number of edges] = =

e Statistic properties of G(n, p)

— Degree distribution?
— Average path length?
— Diameter?
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ER Graph: Degree Distribution

e Let D be a R.V. representing the degree of a node.

e Disa( ) R.V. with parameters ( ).
Thus,

P[D = d] =

e If we keep the expected degree constant as n — oo,
D is approximated by a ( ) R.V. with
A= , l.e.,

P[D = d] =

Thus, ER graph is also called ( ).
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Graphs with Different Parameters

e (5(50,0.01), A first component with more than two

nodes
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e (3(50,0.03), Emergence of cycles
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e (G(50,0.05), Emergence of a giant component

e (G(50,0.10), Emergence of connectedness
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