Martingales &
Azuma-Hoeffding Inequality



Martingales

Definition 12.1: A sequence of random variables Z ., Z,. ... is a martingale with re-
{ ‘ s
spect to the sequence X, X,. ... if, forall n = 0, the following conditions hold:

e Z,isafunctionof Xg, X, .... X,
* EHZnH < OC;
* E[Z;1+I | X(I-’-»-Xn] — Zu'

A sequence of random variables Z . Z,. ... is called martingale when it is a martin-
gale with respect to itself. That is, E[|Z,|] < >c.and E[Z,.\ | Zv.....Z, | = Z,.

* Conditional expected value of next observation, given all past
observations, is equal to the last observation

e Submartingale (>=), Supermartingale (<=)
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Example: Sequential fair games, martingale

X; be the amount the gambler wins on the ith game
* Fairgame: E[X;] =0

* Z; be the gambler’s total winnings at the end of the ith game
¢ Zi :XO +X1 +X2 +"‘+Xi

° E[Zi+1|X1'X2' ""Xl] — [ i+1 +Z |X1'X2' ""Xi] —
E[X; 11Xy, Xoy o, X1 + E[Z:1X1, X5, .., X;]
= E[X;11] + Z; = Z,

Thus, Z; is martingale w.r.t. the sequence (X;)
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Example: Sequential fair games, submartingale

X; be the amount the gambler wins on the ith game
* Fairgame: E[X;] =0

* Z; be the gambler’s total winnings at the end of the ith game

¢ Zi :XO +X1 +X2 +"‘+Xi,Tl‘ =Zl2
* Show that T; is a submartingale
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Doob’s inequality

Proposition 5.3 (Doob’s inequality) Ler (X(¢))s0 be a cadlag (i.e. right-

continuous with left limits) submartingale. Then for every x > Qand T > O
one has

P( sup IX(t)I>x)< “E(X(T)) . G
0<1<T

* Analogy to Markov inequality for a single random variable

 Used for proving Proposition 5.2, but used in many context

« Submartingale “HX|= 80| ULCt= A= intuition2
=,

Ao LONAQO0A



Doob martingale

* A special martingale
* Xy, X4,...,X, be asequence of RVs

* Y beaRVwith E[|Y]|] < o (Y depends on X, ..., X,,)
e Z,=E[Y|X,y .. X;],i=01,..,n

* Z;isindeed martingale since

Using the fact that
ElVvIwW] = E[E[V|U,W]|W]

= Z;.
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Doob martingale

* Concept of the Doob martingale
— Expectation on a certain target r.v. Y given observation upon ith period

— Predict the value of Y, with gradually revealing X;’s to collect
information incrementally

— Z; represents refined estimates of Y

* |In most applications,

— The first element Z, is just E[Y], where Y is independent of “trivial” X,
— Gradually knowing the exact value...

— Finally, Z,, = Y (deterministic)
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Doob martingale

* Examples on random graph G = G, ,,

* X; be edge indicator on particular edge indexi =1, ..., (g)

 F be any function on graph G

« Z;, =E|F(G)|X4, ..., X;] be expected function value given
observations

* This process is called edge exposure martingale

* *Vertex exposure martingale

— Z; = E[F(G)|G4, ..., G;] where G; represents the subgraph of G
induced by first i vertices observed

KAIST LONAQOQ



Tail Inequalities for Maringales
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Azuma-Hoeffding inequality

e Chernoff-like tail bounds of martingales

* Even when the underlying random variables are not independent
— NOTE: Chernoff bound for Poisson trials: independent, but not indentical
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Azuma-Hoeffding inequality

e Chernoff-like tail bounds of martingales

e Theorem 12.4 [Azuma-Hoeffding Inequality]:
Let X, ..., X, be a martingale such that |X;, — Xj_1| < ¢
Then, forallt = 0 and any A > 0,

Pr(|X, — Xo|) = 1) < 2e™4"/@ k=1 k)
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Azuma-Hoeffding inequality
* Proof) Similarly to Chernoff bounds, first derive an upper bound for
E[ea(Xt—Xo)]

DefineY; £ X; — X;_1,i =1, ..., t, since Xy, ... is martingale,
E[Yilxor ""Xi—l] — E[Xi _ Xi—1|XO' "'rXi—l]
= E|Xi[Xo, ., Xima] = Xioq =
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Azuma-Hoeffding inequality

« Now consider E[e%Yi|X,, ..., X;_1] by
1-Y;/ci T 1+Y;/ci
o2

writing Y; = —¢;

 Using convexity of e“Yi we have

ac CXZC 2
_ e "lte L + Yi
2 2Cq

“TC pac

* Therefore, we have

pQcCi —ac;
E[anilxo’ Xl 1 < E[ + e + Y/(eacl _ e—O(Ci)

‘,
edCi 4 e~ aC (ac;)?

<e 2

X,, ...,XH]

Derived by Taylor series expansion of e*
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Azuma-Hoeffding inequality

e |t follows that

- t -
E[ea(Xt—Xo)] — F l_[ani
Li=1 i
-t—1 . -t—1
(“Ct)z
=F e®Vi| E[e®t|X,, ..., X—1] < E He“yi e 2
Li=1 Li=1

2
“2111

<.-<e 2

e Hence, Pr(X; — X, = 1) = Pr(e“(Xt_Xo) > %) <
2 Az
2

2 Si_ 7
< e% k=137 % < o 2Ty

E[ea(Xt_XO)]
ead
Markov inequality
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Applications of the Azuma-Hoeffding inequality

* General technique of applications

e Say that a function f(X) = f (X, ..., X;,) satisfies Lipschitz
condition with bound c if forany i, x Vi.

|f (s oo )X o Xn) — f(xq, . yu X)) S c

Changing single coordlnate can change the function value by at most ¢

* LetZ; = E[f(X)|Xq, ..., Xi] be estimate of f(X) upon kth
observation (Z, = E[f(X)]) = Zj is clearly Doob martingale

* Since Z;, — Z;_1 is bounded within interval whose width is less than
¢ from Lipschitz condition (proof omitted), we can apply Azuma-
Hoeffding inequality (Theorem 12.6) to derive the bound of f(X) —

E[f(X)]



Applications: Balls and bins

 Throwing m balls independently and uniformly into n bins
* X;: RV representing the bin into which ith ball falls

 F:# of empty bins after m balls are thrown

.+ E[F] = n(l —l)m

n

 Thesequence Z; = E[F|Xy, ..., X;] is a Doob martingale
« F=f(Xy,..,X,) satisfies Lipschitz condition with bound 1

 Therefore from Azuma-Hoeffding inequality (Theorem 12.6)
2€?

Pr(|F — E[F]| =€) <2e m

* We can derive the bound even without knowing E[F]
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