Martingales \& Azuma-Hoeffding Inequality

Yung Yi

Martingales

Definition 12.1: A sequence of random variables $Z_{0}, Z_{1} \ldots$ is a martingale with respect to the sequence X_{0}, X_{1}, \ldots if, for all $n \geq 0$, the following conditions hold:

- Z_{n} is a function of $X_{0}, X_{1}, \ldots, X_{n}$;
- $\mathbf{E}\left[\left|Z_{n}\right|\right]<\infty$;
- $\mathbf{E}\left[Z_{n+1} \mid X_{0}, \ldots, X_{n}\right]=Z_{n}$.

A sequence of random variables Z_{0}, Z_{1}, \ldots is called martingale when it is a martingale with respect to itself. That is, $\mathbf{E}\left[\left|Z_{n}\right|\right]<\infty$, and $\mathbf{E}\left[Z_{n+1} \mid Z_{0} \ldots \ldots Z_{n}\right]=Z_{n}$.

- Conditional expected value of next observation, given all past observations, is equal to the last observation
- Submartingale (>=), Supermartingale (<=)

Example: Sequential fair games, martingale

- X_{i} be the amount the gambler wins on the i th game
- Fair game: $E\left[X_{i}\right]=0$
- Z_{i} be the gambler's total winnings at the end of the i th game
- $Z_{i}=X_{0}+X_{1}+X_{2}+\cdots+X_{i}$
- $E\left[Z_{i+1} \mid X_{1}, X_{2}, \ldots, X_{i}\right]=E\left[X_{i+1}+Z_{i} \mid X_{1}, X_{2}, \ldots, X_{i}\right]=$ $E\left[X_{i+1} \mid X_{1}, X_{2}, \ldots, X_{i}\right]+E\left[Z_{i} \mid X_{1}, X_{2}, \ldots, X_{i}\right]$ $=E\left[X_{i+1}\right]+Z_{i}=Z_{i}$
- Thus, Z_{i} is martingale w.r.t. the sequence $\left(X_{i}\right)$

Example: Sequential fair games, submartingale

- X_{i} be the amount the gambler wins on the i th game
- Fair game: $E\left[X_{i}\right]=0$
- Z_{i} be the gambler's total winnings at the end of the i th game
- $Z_{i}=X_{0}+X_{1}+X_{2}+\cdots+X_{i}, T_{i}=Z i^{2}$
- Show that T_{i} is a submartingale

Doob's inequality

Proposition 5.3 (Doob's inequality) Let $(X(t))_{t \geq 0}$ be a càdlàg (i.e. rightcontinuous with left limits) submartingale. Then for every $x \geq 0$ and $T \geq 0$, one has

$$
\begin{equation*}
\mathbf{P}\left(\sup _{0 \leq t \leq T}|X(t)| \geq x\right) \leq \frac{1}{x} \mathbf{E}(|X(T)|) . \tag{5.1}
\end{equation*}
$$

- Analogy to Markov inequality for a single random variable
- Used for proving Proposition 5.2, but used in many context
- Submartingale은 "커지는 경향"이 있다는 것을 intuition으 로.

Doob martingale

- A special martingale
- $X_{0}, X_{1}, \ldots, X_{n}$ be a sequence of RVs
- Y be a RV with $E[|Y|]<\infty\left(Y\right.$ depends on $\left.X_{0}, \ldots, X_{n}\right)$
- $Z_{i}=E\left[Y \mid X_{0}, \ldots, X_{i}\right], i=0,1, \ldots, n$
- Z_{i} is indeed martingale since

$$
\begin{aligned}
& \begin{aligned}
\text { Using the fact that } \\
E[V \mid W]=E[E[V \mid U, W] \mid W]
\end{aligned} \\
& \mathbf{E}\left[Z_{i+1} \mid X_{0}, \ldots, X_{i}\right]=\mathbf{E}\left[\mathbf{E}\left[Y \mid X_{0}, \ldots, X_{i+1}\right] \mid X_{0}, \ldots, X_{i}\right] \\
&=\mathbf{E}\left[Y \mid X_{0}, \ldots, X_{i}\right] \\
&=Z_{i} .
\end{aligned}
$$

Doob martingale

- Concept of the Doob martingale
- Expectation on a certain target r.v. Y given observation upon i th period
- Predict the value of Y, with gradually revealing X_{i} 's to collect information incrementally
- Z_{i} represents refined estimates of Y
- In most applications,
- The first element Z_{0} is just $E[Y]$, where Y is independent of "trivial" X_{0}
- Gradually knowing the exact value...
- Finally, $Z_{n}=Y$ (deterministic)

Doob martingale

- Examples on random graph $G=G_{n, p}$
- X_{i} be edge indicator on particular edge index $i=1, \ldots,\binom{n}{2}$
- F be any function on graph G
- $Z_{i}=E\left[F(G) \mid X_{1}, \ldots, X_{i}\right]$ be expected function value given observations
- This process is called edge exposure martingale
- *Vertex exposure martingale
- $Z_{i}=E\left[F(G) \mid G_{1}, \ldots, G_{i}\right]$ where G_{i} represents the subgraph of G induced by first i vertices observed

Tail Inequalities for Maringales

Azuma-Hoeffding inequality

- Chernoff-like tail bounds of martingales
- Even when the underlying random variables are not independent
- NOTE: Chernoff bound for Poisson trials: independent, but not indentical

Azuma-Hoeffding inequality

- Chernoff-like tail bounds of martingales
- Theorem 12.4 [Azuma-Hoeffding Inequality]: Let X_{0}, \ldots, X_{n} be a martingale such that $\left|X_{k}-X_{k-1}\right| \leq c_{k}$ Then, for all $t \geq 0$ and any $\lambda>0$,

$$
\left.\operatorname{Pr}\left(\left|X_{t}-X_{0}\right|\right) \geq \lambda\right) \leq 2 e^{-\lambda^{2} /\left(2 \sum_{k=1}^{t} c_{k}^{2}\right)}
$$

Azuma-Hoeffding inequality

- Proof) Similarly to Chernoff bounds, first derive an upper bound for $E\left[e^{\alpha\left(X_{t}-X_{0}\right)}\right]$ Define $Y_{i} \triangleq X_{i}-X_{i-1}, i=1, \ldots, t$, since X_{0}, \ldots is martingale,

$$
\begin{aligned}
E\left[Y_{i} \mid X_{0}, \ldots, X_{i-1}\right] & =E\left[X_{i}-X_{i-1} \mid X_{0}, \ldots, X_{i-1}\right] \\
& =E\left[X_{i} \mid X_{0}, \ldots, X_{i-1}\right]-X_{i-1}=0
\end{aligned}
$$

Azuma-Hoeffding inequality

- Now consider $E\left[e^{\alpha Y_{i}} \mid X_{0}, \ldots, X_{i-1}\right]$ by writing $Y_{i}=-c_{i} \frac{1-Y_{i} / c_{i}}{2}+c_{i} \frac{1+Y_{i} / c_{i}}{2}$
- Using convexity of $e^{\alpha Y_{i}}$, we have

$$
\begin{aligned}
& e^{\alpha Y_{i}} \leq \frac{1-Y_{i} / c_{i}}{2} e^{-\alpha c_{i}}+\frac{1+Y_{i} / c_{i}}{2} e^{\alpha c_{i}} \\
& =\frac{e^{\alpha c_{i}}+e^{-\alpha c_{i}}}{2}+\frac{Y_{i}}{2 c_{i}}\left(e^{\alpha c_{i}}-e^{-\alpha c_{i}}\right)
\end{aligned}
$$

- Therefore, we have

$$
\begin{aligned}
& E\left[e^{\alpha Y_{i}} \mid X_{0}, \ldots, X_{i-1}\right] \leq E\left[\left.\frac{e^{\alpha c_{i}}+e^{-\alpha c_{i}}}{2}+\frac{Y_{j}}{2 c_{i}}\left(e^{\alpha c_{i}}-e^{-\alpha c_{i}}\right) \right\rvert\, X_{0}, \ldots, X_{i-1}\right] \\
& =\frac{e^{\alpha c_{i}}+e^{-\alpha c_{i}}}{2} \leq e^{\frac{\left(\alpha c_{i}\right)^{2}}{2}}
\end{aligned}
$$

Derived by Taylor series expansion of e^{x}

Azuma-Hoeffding inequality

- It follows that

$$
\begin{aligned}
& E\left[e^{\alpha\left(X_{t}-X_{0}\right)}\right]=E\left[\prod_{i=1}^{t} e^{\alpha Y_{i}}\right] \\
& =E\left[\prod_{i=1}^{t-1} e^{\alpha Y_{i}}\right] E\left[e^{\alpha Y_{t}} \mid X_{0}, \ldots, X_{t-1}\right] \leq E\left[\prod_{i=1}^{t-1} e^{\alpha Y_{i}}\right] e^{\frac{\left(\alpha c_{t}\right)^{2}}{2}} \\
& \leq \cdots \leq e^{\frac{\alpha^{2} \sum_{i=1}^{t} c_{i}^{2}}{2}}
\end{aligned}
$$

- Hence, $\operatorname{Pr}\left(X_{t}-X_{0} \geq \lambda\right)=\operatorname{Pr}\left(e^{\alpha\left(X_{t}-X_{0}\right)} \geq e^{\alpha \lambda}\right) \leq$

$$
\frac{\frac{E\left[e^{\alpha\left(X_{t}-X_{0}\right)}\right]}{Q^{\alpha \lambda \lambda}} \leq e^{\alpha^{2} \sum_{k=1}^{t} \frac{c_{i}^{2}}{2}-\alpha \lambda} \leq e^{-\frac{\lambda^{2}}{2 \sum_{k=1}^{t} c_{k}^{2}}}}{\text { Markov inequality }}
$$

Applications of the Azuma-Hoeffding inequality

- General technique of applications
- Say that a function $f(\bar{X})=f\left(X_{1}, \ldots, X_{n}\right)$ satisfies Lipschitz condition with bound c if for any i, x, y_{i}

$$
\left|f\left(x_{1}, \ldots, x_{2}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, y_{i}, \ldots, x_{n}\right)\right| \leq c
$$

Changing single coordinate can change the function value by at most c

- Let $Z_{k}=E\left[f(\bar{X}) \mid X_{1}, \ldots, X_{k}\right]$ be estimate of $f(\bar{X})$ upon k th observation $\left(Z_{0}=E[f(\bar{X})]\right) \rightarrow Z_{k}$ is clearly Doob martingale
- Since $Z_{k}-Z_{k-1}$ is bounded within interval whose width is less than c from Lipschitz condition (proof omitted), we can apply AzumaHoeffding inequality (Theorem 12.6) to derive the bound of $f(\bar{X})$ $E[f(\bar{X})]$

Applications: Balls and bins

- Throwing m balls independently and uniformly into n bins
- X_{i} : RV representing the bin into which i th ball falls
- $\quad F$: \# of empty bins after m balls are thrown
- $E[F]=n\left(1-\frac{1}{n}\right)^{m}$
- The sequence $Z_{i}=E\left[F \mid X_{1}, \ldots, X_{i}\right]$ is a Doob martingale
- $F=f\left(X_{1}, \ldots, X_{n}\right)$ satisfies Lipschitz condition with bound 1
- Therefore from Azuma-Hoeffding inequality (Theorem 12.6)

$$
\operatorname{Pr}(|F-E[F]| \geq \epsilon) \leq 2 e^{-\frac{2 \epsilon^{2}}{m}}
$$

- We can derive the bound even without knowing $E[F]$

