Martingales & Azuma-Hoeffding Inequality

Yung Yi

Martingales

Definition 12.1: A sequence of random variables $Z_0, Z_1, ...$ is a martingale with respect to the sequence $X_0, X_1, ...$ if, for all $n \ge 0$, the following conditions hold:

- Z_n is a function of X_0, X_1, \ldots, X_n ;
- $\mathbf{E}[|Z_n|] < \infty;$
- $\mathbf{E}[Z_{n+1} \mid X_0, \ldots, X_n] = Z_n.$

A sequence of random variables $Z_0, Z_1, ...$ is called martingale when it is a martingale with respect to itself. That is, $\mathbf{E}[|Z_n|] < \infty$, and $\mathbf{E}[Z_{n+1} | Z_0, ..., Z_n] = Z_n$.

- Conditional expected value of next observation, given all past observations, is equal to the last observation
- Submartingale (>=), Supermartingale (<=)

Example: Sequential fair games, martingale

- X_i be the amount the gambler wins on the *i*th game
- Fair game: $E[X_i] = 0$
- Z_i be the gambler's total winnings at the end of the *i*th game
- $Z_i = X_0 + X_1 + X_2 + \dots + X_i$
- $E[Z_{i+1}|X_1, X_2, ..., X_i] = E[X_{i+1} + Z_i|X_1, X_2, ..., X_i] = E[X_{i+1}|X_1, X_2, ..., X_i] + E[Z_i|X_1, X_2, ..., X_i] = E[X_{i+1}] + Z_i = Z_i$
- Thus, Z_i is martingale w.r.t. the sequence (X_i)

Example: Sequential fair games, submartingale

- X_i be the amount the gambler wins on the *i*th game
- Fair game: $E[X_i] = 0$
- Z_i be the gambler's total winnings at the end of the *i*th game
- $Z_i = X_0 + X_1 + X_2 + \dots + X_i, T_i = Zi^2$
- Show that T_i is a submartingale

Doob's inequality

Proposition 5.3 (Doob's inequality) Let $(X(t))_{t\geq 0}$ be a càdlàg (i.e. rightcontinuous with left limits) submartingale. Then for every $x \geq 0$ and $T \geq 0$, one has

$$\mathbf{P}\left(\sup_{0\le t\le T}|X(t)|\ge x\right)\le \frac{1}{x}\mathbf{E}(|X(T)|).$$
(5.1)

- Analogy to Markov inequality for a single random variable
- Used for proving Proposition 5.2, but used in many context
- Submartingale은 "커지는 경향"이 있다는 것을 intuition으로.

Doob martingale

- A special martingale
- X_0, X_1, \dots, X_n be a sequence of RVs
- Y be a RV with $E[|Y|] < \infty$ (Y depends on X_0, \dots, X_n)
- $Z_i = E[Y|X_0, ..., X_i], i = 0, 1, ..., n$

• Z_i is indeed martingale since

Using the fact that

$$E[V|W] = E[E[V|U,W]|W]$$

$$E[Z_{i+1} | X_0, ..., X_i] = E[E[Y | X_0, ..., X_{i+1}] | X_0, ..., X_i]$$

$$= E[Y | X_0, ..., X_i]$$

$$= Z_i.$$

Doob martingale

- Concept of the Doob martingale
 - Expectation on a certain target r.v. Y given observation upon *i*th period
 - Predict the value of Y, with gradually revealing X_i 's to collect information incrementally
 - Z_i represents refined estimates of Y
- In most applications,
 - The first element Z_0 is just E[Y], where Y is independent of "trivial" X_0
 - Gradually knowing the exact value...
 - Finally, $Z_n = Y$ (deterministic)

Doob martingale

- Examples on random graph $G = G_{n,p}$
- X_i be edge indicator on particular edge index $i = 1, ..., \binom{n}{2}$
- F be any function on graph G
- $Z_i = E[F(G)|X_1, ..., X_i]$ be expected function value given observations
- This process is called edge exposure martingale
- *Vertex exposure martingale
 - $Z_i = E[F(G)|G_1, ..., G_i]$ where G_i represents the subgraph of G induced by first i vertices observed

Tail Inequalities for Maringales

- Chernoff-like tail bounds of martingales
- Even when the underlying random variables are not independent
 - NOTE: Chernoff bound for Poisson trials: independent, but not indentical

- Chernoff-like tail bounds of martingales
- Theorem 12.4 [Azuma-Hoeffding Inequality]:

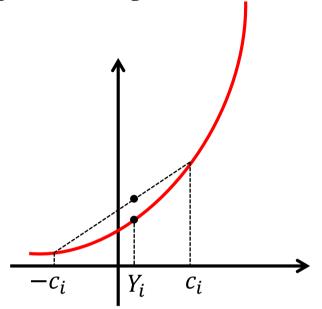
Let $X_0, ..., X_n$ be a martingale such that $|X_k - X_{k-1}| \le c_k$ Then, for all $t \ge 0$ and any $\lambda > 0$,

$$\Pr(|X_t - X_0|) \ge \lambda) \le 2e^{-\lambda^2/(2\sum_{k=1}^t c_k^2)}$$

• Proof) Similarly to Chernoff bounds, first derive an upper bound for $E\left[e^{\alpha(X_t-X_0)}\right]$

Define
$$Y_i \triangleq X_i - X_{i-1}, i = 1, ..., t$$
, since $X_0, ...$ is martingale,
 $E[Y_i|X_0, ..., X_{i-1}] = E[X_i - X_{i-1}|X_0, ..., X_{i-1}]$
 $= E[X_i|X_0, ..., X_{i-1}] - X_{i-1} = 0$

- Now consider $E[e^{\alpha Y_i}|X_0, \dots, X_{i-1}]$ by writing $Y_i = -c_i \frac{1-Y_i/c_i}{2} + c_i \frac{1+Y_i/c_i}{2}$
- Using convexity of $e^{\alpha Y_i}$, we have $e^{\alpha Y_i} \leq \frac{1-Y_i/c_i}{2}e^{-\alpha c_i} + \frac{1+Y_i/c_i}{2}e^{\alpha c_i}$ $= \frac{e^{\alpha c_i}+e^{-\alpha c_i}}{2} + \frac{Y_i}{2c_i}(e^{\alpha c_i}-e^{-\alpha c_i})$



• Therefore, we have $E[e^{\alpha Y_i}|X_0, \dots, X_{i-1}] \leq E\left[\frac{e^{\alpha c_i} + e^{-\alpha c_i}}{2} + \frac{Y_i}{2c_i}(e^{\alpha c_i} - e^{-\alpha c_i})\Big|X_0, \dots, X_{i-1}\right]$ $= \frac{e^{\alpha c_i} + e^{-\alpha c_i}}{2} \leq e^{\frac{(\alpha c_i)^2}{2}}$

Derived by Taylor series expansion of e^x

• It follows that

$$\begin{split} E\left[e^{\alpha(X_t-X_0)}\right] &= E\left[\prod_{i=1}^t e^{\alpha Y_i}\right] \\ &= E\left[\prod_{i=1}^{t-1} e^{\alpha Y_i}\right] E\left[e^{\alpha Y_t} | X_0, \dots, X_{t-1}\right] \le E\left[\prod_{i=1}^{t-1} e^{\alpha Y_i}\right] e^{\frac{(\alpha c_t)^2}{2}} \\ &\le \dots \le e^{\frac{\alpha^2 \sum_{i=1}^t c_i^2}{2}} \end{split}$$

• Hence, $\Pr(X_t - X_0 \ge \lambda) = \Pr(e^{\alpha(X_t - X_0)} \ge e^{\alpha\lambda}) \le \frac{E[e^{\alpha(X_t - X_0)}]}{e^{\alpha\lambda}} \le e^{\alpha^2 \sum_{k=1}^t \frac{c_i^2}{2} - \alpha\lambda} \le e^{-\frac{\lambda^2}{2 \sum_{k=1}^t c_k^2}}$ Markov inequality

Applications of the Azuma-Hoeffding inequality

- General technique of applications
- Say that a function $f(\overline{X}) = f(X_1, ..., X_n)$ satisfies Lipschitz condition with bound c if for any i, x, y_i $|f(x_1, ..., x_i) ..., x_n) - f(x_1, ..., y_i) ..., x_n)| \le c$ Changing single coordinate can change the function value by at most c
- Let $Z_k = E[f(\overline{X})|X_1, ..., X_k]$ be estimate of $f(\overline{X})$ upon kth observation $(Z_0 = E[f(\overline{X})]) \rightarrow Z_k$ is clearly Doob martingale
- Since $Z_k Z_{k-1}$ is bounded within interval whose width is less than *c* from Lipschitz condition (proof omitted), we can apply Azuma-Hoeffding inequality (Theorem 12.6) to derive the bound of $f(\overline{X}) - E[f(\overline{X})]$

Applications: Balls and bins

- Throwing *m* balls independently and uniformly into *n* bins
- X_i : RV representing the bin into which *i*th ball falls
- *F*: # of empty bins after *m* balls are thrown
- $E[F] = n\left(1 \frac{1}{n}\right)^m$
- The sequence $Z_i = E[F|X_1, ..., X_i]$ is a Doob martingale
- $F = f(X_1, ..., X_n)$ satisfies Lipschitz condition with bound 1
- Therefore from Azuma-Hoeffding inequality (Theorem 12.6) $\Pr(|F - E[F]| \ge \epsilon) \le 2e^{-\frac{2\epsilon^2}{m}}$
- We can derive the bound even without knowing E[F]

