Game Theory Lecture \#6

Outline:

- Hawk/Dove \& Mixed strategies
- Correlated equilibrium

Hawk/Dove

H	D	
	0,0	6,1
D	1,6	3,3

- Setup:
- H : hawk = aggressive
$-D:$ dove $=$ passive
- Model of game of "chicken" or traffic intersection
- First look: What are the pure (i.e., non-randomized) action NE?
- Best response function for row player:

$$
B_{\text {Row }}(H)=D \quad \& \quad B_{\text {Row }}(D)=H
$$

- Symmetric for column player
- NE: (H, D) and (D, H)

Hawk/Dove: Mixed strategies

H	D	
H	0,0	6,1
D	1,6	3,3

- Second look: What are the mixed strategy NE?
- As before, we construct best response function, but for mixed strategies
- Row: $\operatorname{Pr}(H)=p$ and $\operatorname{Pr}(D)=1-p$
- Column: $\operatorname{Pr}(H)=q$ and $\operatorname{Pr}(D)=1-q$
- Players select $\{H, D\}$ independently
- Best response for row player: Need to maximize expected payoff, i.e.,

$$
\begin{aligned}
& \max _{0 \leq p \leq 1} p(0 \cdot q+6 \cdot(1-q))+(1-p)(1 \cdot q+3 \cdot(1-q)) \\
& \Downarrow
\end{aligned}
$$

- Conclusion:

$$
B_{\mathrm{Row}}(q)=\left\{\begin{array}{ll}
1 & q<3 / 4 \\
{[0,1]} & q=3 / 4 \\
0 & q>3 / 4
\end{array} \& B_{\mathrm{CoL}}(p)= \begin{cases}1 & p<3 / 4 \\
{[0,1]} & p=3 / 4 \\
0 & p>3 / 4\end{cases}\right.
$$

H/D: Best response plots

- NE occur at intersection of best response plots
- NE of original pure strategy game are still present
- New "mixed strategy" NE: $\left(p^{*}, q^{*}\right)=(3 / 4,3 / 4)$
- Peculiarity: At mixed strategy NE, players are indifferent, i.e.,

$$
B_{\mathrm{ROW}}(3 / 4)=[0,1] \& B_{\mathrm{COL}}(3 / 4)=[0,1]
$$

i.e., at NE , best response is to play (H, D) with any probability combination.

- The mixed strategy NE makes both players indifferent

H/D: Coordination

H	D	
	0,0	6,1
D	1,6	3,3

- Think of Hawk/Dove game as model of traffic intersection
- NE:
- Row player always has right of way
- Column player always has right of way
- Both player proceeds with probability $3 / 4$

None of these are very satisfying

- Alternative "solution": Players alternate right of way
- Compare payoffs (row player):
- At mixed strategy NE:

$$
0 \cdot p q+6 \cdot p(1-q)+1 \cdot(1-p) q+3 \cdot(1-p)(1-q)=1.5
$$

at $p=q=3 / 4$

- Alternating:

$$
6 \cdot 1 / 2+1 \cdot 1 / 2=3.5
$$

- Alternating is desirable...can it be supported from game theoretic viewpoint?

H/D correlated (non-independent) strategies

- Alternating can be modeled as randomly choose who gets right of way. This results in probability distribution of the form:

0	$1 / 2$
$1 / 2$	0

- Mixed strategy forces probability distributions over joint actions with special form:

$p q$	$p(1-q)$
$(1-p) q$	$(1-p)(1-q)$

Mixed strategies cannot produce above probabilities

- New setup:
- Players, actions, preferences over action profile probabilities (as before)
- Referee will choose an action profile according to a "joint distribution"

α_{HH}	α_{HD}
α_{DH}	α_{DD}

- Player decisions: Obey referee or not.
- A correlated equilibrium is a Referee's probability distribution, α^{*}, such that neither player has a unilateral incentive to disobey.

H/D correlated equilibrium

- Claim:

0	$1 / 2$
$1 / 2$	0

is a correlated equilibrium

- Analyze from row player's perspective: What is expected reward?

H	
H	D
	0,0
	$1,6,1$
	1,6

- Obey referee: $(1+6) / 2=3.5$
- Obey referee for H but deviate when referee says $D:(0+6) / 2=3$
- Obey referee for D but deviate when referee says $H:(1+3) / 2=2$
- Always disobey referee: $(0+3) / 2=1.5$

Conclusion: There is no unilateral incentive to disobey referee.

- Correlated equilibrium include:
- Pure strategy NE
- Mixed strategy NE
- Distributions that are neither Pure or Mixed NE
- Any convex combination of all of the above
- Models of correlation:
- Referee draws $a^{*} \Rightarrow$ Information given to each player \Rightarrow Players can adjust strategy
- Correlated equilibrium: Information given to each player is a_{i}^{*}. (Conditional)
- Coarse correlated equilibrium: No information given to each player. (Unconditional)
- Which equilibrium set is larger? Does one contain the other?

H/D correlated equilibrium

- Can we characterize the set of coarse correlated equilibria?

H	
D	
	0,0
	6,1
	1,6
	3,3

- Row player's perspective:
- Expected payoff obeying referee:

$$
U_{\mathrm{ROW}}\left(\alpha^{*}\right)=\alpha_{\mathrm{HH}}^{*} \cdot 0+\alpha_{\mathrm{HD}}^{*} \cdot 6+\alpha_{\mathrm{DH}}^{*} \cdot 1+\alpha_{\mathrm{DD}}^{*} \cdot 3
$$

- Expected payoff by choosing H :

$$
U_{\mathrm{Row}}\left(\alpha^{*} \mid H\right)=\left(\alpha_{\mathrm{HH}}^{*}+\alpha_{\mathrm{DH}}^{*}\right) \cdot 0+\left(\alpha_{\mathrm{HD}}^{*}+\alpha_{\mathrm{DD}}^{*}\right) \cdot 6
$$

- Expected payoff by choosing D :

$$
U_{\mathrm{Row}}\left(\alpha^{*} \mid D\right)=\left(\alpha_{\mathrm{HH}}^{*}+\alpha_{\mathrm{DH}}^{*}\right) \cdot 1+\left(\alpha_{\mathrm{HD}}^{*}+\alpha_{\mathrm{DD}}^{*}\right) \cdot 3
$$

- Coarse correlated equilibrium conditions:

$$
\begin{aligned}
U_{\mathrm{ROW}}\left(\alpha^{*}\right) & \geq U_{\mathrm{ROW}}\left(\alpha^{*} \mid H\right) \\
U_{\mathrm{ROW}}\left(\alpha^{*}\right) & \geq U_{\mathrm{DH}}^{*} \geq 3 \alpha_{\mathrm{DD}}^{*} \\
U_{\mathrm{CoL}}\left(\alpha^{*}\right) & \geq U_{\mathrm{COL}}\left(\alpha^{*} \mid H\right) \Rightarrow \alpha_{\mathrm{HD}}^{*} \geq 3 \alpha_{\mathrm{HH}}^{*} \\
U_{\mathrm{HOL}}^{*}\left(\alpha^{*}\right) \geq 3 \alpha_{\mathrm{DD}}^{*} & \geq U_{\mathrm{COL}}\left(\alpha^{*} \mid D\right) \Rightarrow \alpha_{\mathrm{DH}}^{*} \geq 3 \alpha_{\mathrm{HH}}^{*}
\end{aligned}
$$

- Set of coarse correlated equilibrium:

α_{HH}^{*}	$\alpha_{\mathrm{HD}}^{*} \geq \max \left\{1 / 3 \cdot \alpha_{\mathrm{HH}}^{*}, 3 \cdot \alpha_{\mathrm{DD}}^{*}\right\}$
$\alpha_{\mathrm{DH}}^{*} \geq \max \left\{1 / 3 \cdot \alpha_{\mathrm{HH}}^{*}, 3 \cdot \alpha_{\mathrm{DD}}^{*}\right\}$	α_{DD}^{*}

- Is $\left(\alpha_{\mathrm{HH}}^{*}, \alpha_{\mathrm{HD}}^{*}, \alpha_{\mathrm{DH}}^{*}, \alpha_{\mathrm{DD}}^{*}\right\}=\{0,1 / 2,1 / 2,0\}$ a coarse correlated equilibrium?
- What is the maximum value of α_{HH}^{*} in any coarse correlated equilibrium?

