Outline:

- \bullet Hawk/Dove & Mixed strategies
- Correlated equilibrium

Hawk/Dove

	H	D
Η	0, 0	6, 1
D	1, 6	3,3

- Setup:
 - -H: hawk = aggressive
 - D: dove = passive
 - Model of game of "chicken" or traffic intersection
- First look: What are the pure (i.e., non-randomized) action NE?
 - Best response function for row player:

$$B_{\text{ROW}}(H) = D \& B_{\text{ROW}}(D) = H$$

- Symmetric for column player
- $\mathsf{NE}: (H, D) \text{ and } (D, H)$

$$\begin{array}{c|cccc}
H & D \\
\hline
H & 0,0 & 6,1 \\
D & 1,6 & 3,3 \\
\end{array}$$

- Second look: What are the mixed strategy NE?
- As before, we construct best response function, but for *mixed* strategies
 - Row: $\Pr(H) = p$ and $\Pr(D) = 1 p$
 - Column: $\Pr(H) = q$ and $\Pr(D) = 1 q$
 - Players select $\{H, D\}$ independently
- Best response for row player: Need to maximize expected payoff, i.e.,

$$\max_{0 \le p \le 1} p \left(0 \cdot q + 6 \cdot (1-q) \right) + (1-p) \left(1 \cdot q + 3 \cdot (1-q) \right)$$

$$\Downarrow$$

$$B_{\text{ROW}}(q) = \begin{cases} 1 & \left(0 \cdot q + 6 \cdot (1-q) \right) > \left(1 \cdot q + 3 \cdot (1-q) \right) \\ \left[0, 1 \right] & \left(0 \cdot q + 6 \cdot (1-q) \right) = \left(1 \cdot q + 3 \cdot (1-q) \right) \\ 0 & \left(0 \cdot q + 6 \cdot (1-q) \right) < \left(1 \cdot q + 3 \cdot (1-q) \right) \end{cases}$$

• Conclusion:

$$B_{\text{ROW}}(q) = \begin{cases} 1 & q < 3/4 \\ [0,1] & q = 3/4 & \& B_{\text{COL}}(p) = \begin{cases} 1 & p < 3/4 \\ [0,1] & p = 3/4 \\ 0 & p > 3/4 \end{cases}$$

- NE occur at intersection of best response plots
 - NE of original pure strategy game are still present
 - New "mixed strategy" NE: $(p^{\ast},q^{\ast})=(3/4,3/4)$
- Peculiarity: At mixed strategy NE, players are indifferent, i.e.,

 $B_{\rm ROW}(3/4) = [0,1] \& B_{\rm COL}(3/4) = [0,1]$

i.e., at NE, best response is to play (H, D) with any probability combination.

• The mixed strategy NE makes both players indifferent

H/D: Coordination

- Think of Hawk/Dove game as model of traffic intersection
- NE:
 - Row player always has right of way
 - Column player always has right of way
 - Both player proceeds with probability 3/4

None of these are very satisfying

- Alternative "solution": Players alternate right of way
- Compare payoffs (row player):
 - At mixed strategy NE:

$$0 \cdot pq + 6 \cdot p(1-q) + 1 \cdot (1-p)q + 3 \cdot (1-p)(1-q) = 1.5$$

- at p=q=3/4
- Alternating:

$$6 \cdot 1/2 + 1 \cdot 1/2 = 3.5$$

• Alternating is desirable...can it be supported from game theoretic viewpoint?

H/D correlated (non-independent) strategies

• Alternating can be modeled as randomly choose who gets right of way. This results in probability distribution of the form:

0	1/2
1/2	0

• Mixed strategy forces probability distributions over joint actions with special form:

pq	p(1-q)
(1-p)q	(1-p)(1-q)

Mixed strategies cannot produce above probabilities

- New setup:
 - Players, actions, preferences over action profile probabilities (as before)
 - Referee will choose an action profile according to a "joint distribution"

$lpha_{ m HH}$	$lpha_{ ext{HD}}$
$\alpha_{ m DH}$	$lpha_{ ext{DD}}$

- Player decisions: Obey referee or not.

• A correlated equilibrium is a Referee's probability distribution, α^* , such that neither player has a unilateral incentive to disobey.

• Claim:

0	1/2
1/2	0

is a correlated equilibrium

• Analyze from row player's perspective: What is expected reward?

	H	D
Η	0, 0	6, 1
D	1, 6	3,3

- Obey referee: (1+6)/2 = 3.5
- Obey referee for H but deviate when referee says D: (0+6)/2 = 3
- Obey referee for D but deviate when referee says H: (1+3)/2 = 2
- Always disobey referee: (0+3)/2 = 1.5

Conclusion: There is no unilateral incentive to disobey referee.

- Correlated equilibrium include:
 - Pure strategy NE
 - Mixed strategy NE
 - Distributions that are neither Pure or Mixed NE
 - Any convex combination of all of the above
- Models of correlation:
 - Referee draws $a^* \Rightarrow$ Information given to each player \Rightarrow Players can adjust strategy
 - Correlated equilibrium: Information given to each player is a_i^* . (Conditional)
 - Coarse correlated equilibrium: No information given to each player. (Unconditional)
 - Which equilibrium set is larger? Does one contain the other?

• Can we characterize the set of coarse correlated equilibria?

	H	D
Η	0, 0	6, 1
D	1, 6	3,3

- Row player's perspective:
 - Expected payoff obeying referee:

$$U_{\rm ROW}(\alpha^*) = \alpha^*_{\rm HH} \cdot 0 + \alpha^*_{\rm HD} \cdot 6 + \alpha^*_{\rm DH} \cdot 1 + \alpha^*_{\rm DD} \cdot 3$$

- Expected payoff by choosing H:

$$U_{\text{ROW}}(\alpha^*|H) = (\alpha^*_{\text{HH}} + \alpha^*_{\text{DH}}) \cdot 0 + (\alpha^*_{\text{HD}} + \alpha^*_{\text{DD}}) \cdot 6$$

- Expected payoff by choosing D:

$$U_{\rm ROW}(\alpha^*|D) = (\alpha^*_{\rm HH} + \alpha^*_{\rm DH}) \cdot 1 + (\alpha^*_{\rm HD} + \alpha^*_{\rm DD}) \cdot 3$$

• Coarse correlated equilibrium conditions:

$$U_{\rm ROW}(\alpha^*) \geq U_{\rm ROW}(\alpha^*|H) \Rightarrow \alpha^*_{\rm DH} \geq 3\alpha^*_{\rm DD}$$

$$U_{\rm ROW}(\alpha^*) \geq U_{\rm ROW}(\alpha^*|D) \Rightarrow \alpha^*_{\rm HD} \geq 3\alpha^*_{\rm HH}$$

$$U_{\rm COL}(\alpha^*) \geq U_{\rm COL}(\alpha^*|H) \Rightarrow \alpha^*_{\rm HD} \geq 3\alpha^*_{\rm DD}$$

$$U_{\rm COL}(\alpha^*) \geq U_{\rm COL}(\alpha^*|D) \Rightarrow \alpha^*_{\rm DH} \geq 3\alpha^*_{\rm HH}$$

• Set of coarse correlated equilibrium:

$lpha^*_{ m HH}$	$\alpha_{\rm HD}^* \geq \max\{1/3 \cdot \alpha_{\rm HH}^*, 3 \cdot \alpha_{\rm DD}^*\}$
$\alpha_{\rm DH}^* \geq \max\{1/3 \cdot \alpha_{\rm HH}^*, 3 \cdot \alpha_{\rm DD}^*\}$	$lpha^*_{ ext{DD}}$

- Is $(\alpha_{\text{HH}}^*, \alpha_{\text{DH}}^*, \alpha_{\text{DH}}^*, \alpha_{\text{DH}}^*) = \{0, 1/2, 1/2, 0\}$ a coarse correlated equilibrium?
- ullet What is the maximum value of $\alpha^*_{\rm HH}$ in any coarse correlated equilibrium?