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Learning and Dynamics in Games

® Tension: Even though strategic form games model “one shot”
interactions

— NE: better motivated as the outcome of a dynamic process

— Unclear how to interpret mixed strategies and Bernoulli payoffs as
“one shot”.

® Resolution

— Define interactive processes that lead to NE
® Sorry for the notations

— Some notations are used with different mathematical symbols
— Please understand that making slides takes a lot of time
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Games with Complete/Incomplete Information

® Complete Information
— Every player knows the number of players and the strategy sets of all the
players and their utility functions.
— Every player knows that every player is rational.

® Incomplete Information

— A player knows some information about himself, but has partial (or no)
information about the others.

® Learning for Incomplete Information

— Investigate ways in which players can optimize their own
utility while simultaneously learning from experience or
observations.
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Taxonomy: Learning Algorithms

® Fully distributed (or Uncoupled) learning algorithm
— A player does not use information about the other players.

— Builds his strategies and updates them by using own-actions
and own-utilities.

® Partially distributed learning algorithm

— A player implements his updating rule after receiving some
data about others.

— The amount and the kind of data may depend on each
algorithm (We will discuss this later)

Yung Yi 5 &Sl_
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Framework: Learning in Games (1)

e Consider the following one-shot game

— Players N
— Actions A;

— Utility functions u; : A — R
e Setup: Repeated one-shot game produces sequence of outcomes a(0), a(l), a(2), ...
e Procedure: At each time t € {0,1,2, ...}, each player i € N simultaneously

— Selects a strategy p;(t) € A(A;)
— Selects an action a;(t) randomly according to strategy p;(?)
— Receives utility w;(a;(t), a_;(t))

e Each player updates strategy using available information
pi(t+1) = f(a(0),a(l),...,a(t); u;)

e The strategy update function f(-) is referred to as the learning rule

Yung Yi 6 ﬂ-’ﬂ_
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Framework: Learning in Games (2)

e Goal: Provide asymptotic guarantees if all players follow a specific f(-)

e Concern: How much information do players have access to?

— Structural form of utility function, i.e., u;(-)?

— Action of other players, i.e., a_;(t)?

— Perceived reward for alternative actions, i.e., u;(a;, a_;(t)) for any a;
— Utility received, u;(a(t))

e Informational restrictions place restriction on class of admissible learning rules

Yung Yi 7 LIST-



Some Concepts

- Better Reply Graph

- Finite Improvement Property
- Weakly Acyclic Game

- Correlated Equilibrium



Better Reply Graph G*
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e Define the following better reply graph

— Nodes are joint actions, a € A

— Edges are unilateral better replies

e Details:

— Let a = (a;,a_;) and @’ = (a}, a_;) be two distinct nodes.

— There is an edge from a to d’ if
Ui(al,a_;) > U(a;, a_;)
i.e., deviating agent 7 experienced an improvement

e Example: Stag hunt

S H
s[3.370.1
H{1,0]1.1

— Why isn't there an edge from (H, H) to (5,5)7
— What are the dead end nodes?

|

[
Yung Yi 9 @

e Example: Matching pennies S

@4_

I
()

S

H

1,—1

—1,1

—1,1

1,—1

Why are there cycles?
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FIP (Finite Improvement Property)

e A game has the finite improvement property if every path in the better reply graph
leads to an NE.

e See above illustration: 3 players, 2 moves each.

Yung Yi 10 ﬂ_'-ll
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Potential game and FIP (1)

e The finite improvement property is difficulty to verify.

e Alternative: Potential games.

e A game is a potential game if there exists a potential function
o: A—R

with the following property. Let (a;,a_;) and (a..a_;) be two distinct joint actions.

/

Ui(ai,a_;) — Ui(ai, a_;) = o(a;, a_;) — d(a;, a_;)

e In words: Unilateral changes in any agent’s payoff quantitatively equals changes in a
potential function. Player’s utility functions are aligned with the potential function.

e FACT: Any potential game has the finite improvement property.

e How? A unilateral better reply increases the potential function. From finiteness, it
cannot perpetually increases.

Yung Yi 11 Ll‘_'-)l



LONQAOAO

Potential Game and FIP (2)

e Broader definition: Generalized ordinal potential game

(]1((1;, (L_i) — l/ri((l.i, (l._z') > ()
Y

d(az, a—i) — dlai, a_;) >0

e FACT: Any generalized ordinal potential game has the finite improvement property.

Yung Yi 12 Ll‘_'-)l
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Weakly Acyclic Game (1)

e Weakly acyclic games provide a generalization of potential games.

e A game is a weakly acyclic game if there exists a better reply path from any action
profile to a pure Nash equilibrium.

%

o/

(D
\ 0

Potential Game Weakly Acyclic Game

e FAacT: A weakly acyclic game does not necessarily have the finite improvement property.
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Weakly Acyclic Game (2)

e Alternative defintion: A game is a weakly acyclic game if there exists a potential
function

o: A— R

with the following property: For any action profile a that is not a Nash equilibrium, there
exist a player ¢ with an action a} such that

Ui(ai,a_;) — Ui(aj,a_;) >0 and é(a;, a_;) — dlaj,a_;) >0

e In words: At least one agent’s utility function is aligned with the potential function.
(weaker form of alignment)

Yung Yi 14 M:T_
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Summary

Yung Yi 15 _I(Iﬂ
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Correlated Strategies

@ In a Nash equilibrium, players choose strategies (or randomize over
strategies) independently.
@ For games with multiple Nash equilibria, one may want to allow for

randomizations between Nash equilibria by some form of
communication prior to the play of the game.

Example Consider the Battle of the Sexes game:

Ballet Football
Ballet 1,4 0,0
Football 0,0 4.1

Suppose that the players flip a coin and go to the Ballet if the coin is
Heads, and to the Football game if the coin is tails, i.e., they randomize
between two pure strategy Nash equilibria, resulting in a payoff of
(5/2,5/2) that is not a Nash equilibrium payoff.

KAIST
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Traffic Intersection Game (1)

Consider a game where two cars arrive at an intersection simultaneously.
Row player (player 1) has the option to play U or D, and the column
player (player 2) has the option to play L or R with payoffs as follows.

L R
Ul51 |00
D|44 | 1,5

@ There are two pure strategy Nash equilibria: (U, L) and (D, R).

@ To find the mixed strategy Nash equilibria, assume player 1 plays U
with probability p and player 2 plays L with probability g. Using the
mixed equilibrium characterization, we have

5g=4q+(1-q)=q=;
op=4p+(l-p)=p=3

@ This implies that there is a unique mixed strategy equilibrium with
expected payoff (5/2,5/2).

Yung Yi 17 ﬂ_'-ll
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Traffic Intersection Game (2)

@ Assume that there is a publicly observable random variable (such as a
fair coin) such that with probability 1/2 (Head), player 1 plays U and
player 2 plays L, and with probability 1/2 (Tail), player 1 plays D and
player 2 plays R.

@ The expected payoff for this play of the game increases to (3,3).

@ We show that no player has an incentive to deviate from the
“recommendation” of the coin.

o If player 1 sees a Head, he believes that player 2 will play L, and
therefore playing U is his best response (similar argument when he
sees a Tail).

e Similarly, if player 2 sees a Head, he believes that player 1 will play U,
and therefore playing L is his best response (similar argument when
he sees a Tail).

@ When the recommendation of the coin is part of a Nash equilibrium,
no player has an incentive to deviate

Yung Yi 18 KAIST
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Traffic Intersection Game (3)

e With a publicly observable random variable, we can get any payoff
vector in the convex hull of Nash equilibrium payoffs.

e Note that the convex hull of a finite number of vectors xq, ..., X IS
given by

k k
conv({xy,..., b)) ={x|x=)Y Aix;, A; >0, Y A; =1}
i=1 =1

@ The coin flip is one way of communication prior to the play.
@ A more general form of communication is to find a trusted mediator
who can perform general randomizations.
@ Consider next a more elaborate signalling scheme.
@ Suppose the players find a mediator who chooses x € {1, 2,3} with
equal probability 1/3. She then sends the following messages:
o If x =1, player 1 plays U, player 2 plays L.

o If x = 2, player 1 plays D, player 2 plays L.
o If x =3, player 1 plays D, player 2 plays R.

Yung Yi 19 M
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Traffic Intersection Game (4)

@ We show that no player has an incentive to deviate from the
“recommendation” of the mediator:

o If player 1 gets the recommendation U, he believes player 2 will play L,
so his best response is to play U.

o If player 1 gets the recommendation D, he believes player 2 will play
L, R with equal probability, so playing D is a best response.

o If player 2 gets the recommendation L, he believes player 1 will play
U, D with equal probability, so playing L is a best response.

o If player 2 gets the recommendation R, he believes player 1 will play D,
so his best response is to play K.

@ Thus the players will follow the mediator's recommendations.

e With the mediator, the expected payoffs are (10/3,10/3), strictly
higher than what the players could get by randomizing between Nash
equilibria.

Yung Yi 20 ﬂ_'-ll



LONQAOAO

Correlated Equilibrium (1)

@ [he preceding examples lead us to the notions of correlated strategies
and “correlated equilibrium” .

o Let A(S) denote the set of probability measures over the set S.

o Let R be a random variable taking values in S = I1"_, 5; distributed
according to 7.

o An instantiation of R is a pure strategy profile and the it component
of the instantiation will be called the recommendation to player 1.
e Given such a recommendation, player i/ can use conditional probability

to form a posteriori beliefs about the recommendations given to the
other players.

Yung Yi 21 M
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Correlated Equilibrium (2)

® (= (N,{Si}ien, {Uitien)
- Denote S =[]S; and let q be a probability distribution on S
- Denote the probability of s € S by q(s).

® The prob. dist. g is a correlated equilibrium if, for every i € N,
every s, s €S,

z q(si, s—ui(sg, s-) = z q(si, s—)ui(s;,s-;)

S_i€ES_; S_i€ES_j
If we divide both sides by q(s;) (= X, s a(s;,5-))

z q(s_ilspu;(sy, s—y) = z q(s_ilspu;(sy,s-;)

S_iES_; S_iES_;

I'th conditional expected payoff I'th conditional expected payoff
Jdrom playing s, from playing s', KAIST
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Interpretation of Correlated Equilibrium

z q(s_;i|siu;(s;,s-;) = 2 q(s_;|s)u;(s;,s-;)

S_;ES_; S_{ES_;

® Consider the following 2 stage procedure
1. Recommendation : an action-tuple s € S is drawn via the q.
Each player i is told only his part of the outcome (i.e., s).

2. Switch : each player is given the chance to switch to an
alternative action s’ # s,

® If gis a correlated equilibrium, i‘s conditional expected payoff
from playing alternative action s’; # s;is no higher than playing
drawn action s;

® [f gis a product measure, i.e. the play of different player is
independent, correlated equilibrium is equal to Nash eq.

Yung Yi 23 M
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Contents

® Environment

® 1. Best Response Dynamics

® 2. Fictitious Play Based Learning

® 3. Logit Equilibrium Learning (Logic Dynamics)
(smoothed fictitious play)

Yung Yi 25 Ll‘_'-)l
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Environment of 3 algorithms

® Every player knows his utility function and can observe at
each stage the actions played by others

® They don’t know the other’s utility function.

— Don’t know equilibria of game

® Continuous/discrete action space (BRD, FPL)
Only discrete action space (LOGIT)

KAIST
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How to define update time?

® Discrete time

— Synchronous: Each player updates simultaneously
— Asynchronous: At each time, only one player updates.

* For fair update chances, it is often assumed “sequential”

® Continuous time

— Often, assume that each player has its own Poisson clock with, say,
unite rate

— No simultaneous update
— Long-term fair update chances

® You can use your own update timing assumption, depending
on the target applications

Yung Yi 27 M
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Best Response Dynamics (BRD)

® Procedure (Asynchronous/Sequential Version)

1. Starting state, say a(0)=(a;(0),a,(0),...,a,(0))

2. Player i updates his action to his best response to
a(0).

3. Player j updates his action to his best response to the new
action profile which only one action has been updated.

4. Another player updates his action to his best response to the
new action profile which two actions have been updated. And

SO On.

® There also exists a synchronous BRD

a;(t +1) = Bi(a_i(t))

KAIST

Yung Yi 29
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Synchronous BRD with or without inertia

® Synchronous BRD

ailt +1) = Bi(a_i(t))

— Often, experience oscillations

® Synchronous BRD with inertia

a;(t) with probability €
arg maxXq,ca, wi(a;, a_;(t))  with probability 1 — €

(l,-.zj(t + 1) — {

— Emulates “asynchronous” BRD
— Helps in avoiding oscillations

Yung Yi 30 M
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Convergence of BRD

® Not many general results on the convergence of BRD
® Often, ad-hoc proof has to be done
® Convergence for potential games

® Young (2004)

— In weakly acyclic games,
— A-BRD converges with probability one to a pure Nash equilibrium
— As discussed, weakly acyclic games is the superset of potential games
* WAG is just a sufficient condition for the convergence
® Need to check the convergence of BRD for the corresponding
applications

Yung Yi 31 M
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Fictitious Play (mixed strategy)

e A learning rule is of the form

o
e ——
[
P
~
p—
~
~‘1
p—

pi(t+1) = f(a(l).a(2), ...

e Define empirical frequencies ¢;(t) as follows:

How many a; are played until t

e Fictitious play: Each player best responds to empirical frequencies

a;(t + 1) € arg max Z ui(a;,a_;) H q;’ (t)

a; EAi a_,EA_i ]7&2

4

Difference from BRD? Empirical distribution of g

Yung Yi 33 ﬂ_'-ll
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Logit Learning

® Logit (or Boltzmann-Gibbs) learning can be interpreted as a
variant of fictitious play or variant of best-response dynamics

® A modification of fictitious play
- Players’ responses are smoothed by small random trembles.

- Letx_;(t) € A(A_;) be i’s forecast for the opponents’ behavior
attime t
- x_;(t) can be: (i) (ii)
- ichooses his action a; with probability

1 - :
_ Syt (a; x_i(t) Logistic function
l(a-lx_- t ) — (or Bolzmann-Gibbs
g (ailx—i(t) 5 eyiiui (ajx_i())  Distribution)
aleA;
l l

Where g'(a;) is the prob. that i chooses action q;

KAIST
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Logit Learning (cont’d)

® ¢ (a;lx_i(1)) it @ A=i(©)
a, x_. —
q [ l e%iui (ag,x_i(t))

® Ify; > 0OisclosetoO,

— the learning rule closely approximates a best response.

® If y; becomes larger,

— the learning tends to a uniform distribution.

= y; : level of rationality of player i

Yung Yi 36 ﬂ_'-ll
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Summary

Yung Yi 37 _I(Iﬂ
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Convergence of BRD

® Young (2004)

— In weakly acyclic games,
— A-BRD converges with probability one to a pure Nash equilibrium

— As discussed, weakly acyclic games is the superset of potential games
* WAG is just a sufficient condition for the convergence

® Things to do

— We have to see some papers which use BRD and prove that it converges to
pure NE.

* Case-by-case

— Are there such papers? Need to google

Yung Yi 38 M



® Almost sure

Yung Yi 39

e Recall: St. Petersburg Paradox

— Player repeatedly flips coing
— Game terminates when player first flips Tail
— Payoff is 2 where x is the time where player first flips Tail

e Does the game end “surely” or “almost surely”?

e Inspect: We can represent the game as a Markov chain

Prail

Phead C’/—\ D 1

e Enumerate all possible game trajectories that result in end

— 21 = {T'} with probability Py

— 29 = {H, T} with probability (Pgeaq) Prail

— 23 = {H, H.T} with probability (Piead)? Prui

— zp =1{H,...,H, T} with probability (PHead)” ™" Pran

e Probability that game ends

o0 oo

k

> Prob[z] =P Y (Pheat)” =1

k=1 k=0
e [he game ends almost surely... not surely.. Why?
e Consider the sequence {7 7.7, ....}
e [he sequence does not result in end game. Probability of sequence is 0.

e Almost surely = surely for all practical purposes
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e FacT: Cournot dynamics with inertia converges almost surely to a NE in potential games

® Proof

‘ | a(t) with probability ¢
a(t+1) = { arg ming c 4, ui(a;,a_;(t))  with probability 1 — ¢
of e Proof possesses similar idea to previous page
BR _
e >0
—

C finite probability ‘D 1

e What is the probability of always avoiding path for & consecutive timesteps

finite # iterations

(1—6)F—=0

e Can just lower bound probability from any action profile @ and results still holds

P,>e>0

e Direction of proof: Find ¢ and finite # iterations such that statement is true
e Inspection: Suppose a(t) = a™. Then a(7) = a™ for all times 7 > ¢

e Revised direction: Find ¢ and finite # iterations such that a NE is played once

Yung Yi 40 _KAIST ue?”
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e Key insight: Use better reply graph to find € and bound on # iterations

Potential Game Weakly Acyclic Game

e [he following sequence of actions occurs with positive probability ¢ > 0:

— All but 1 player uses inertia, and non-inertia player does best reply
— Repeat until NE
— Once NE reached — stuck

e What is an upper bound on the number of iterations in above sequence?
Yung Yi 41 M
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Summary of BRD (Conjecture)

® Asynchronous (or sequential) BRD
— Converges to NE (for a special class of the game mentioned earlier)

® Synchronous

— BRD with inertia: Similarly converges to NE

— Pure BRD: May not converge due to possible oscillations (even in
potential games?)

® Basic idea on convergence

— Asynchronous or inertia: &A|0f| update= oll A{, oscillationO| L X| %
= /tsd 2

Yung Yi 42 M
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Fictitious Play (pure strategy)

a;(t+1) € arg max Z (u,;(a;‘,az-) qu?a(t))

ai€Ai A, i

o MLHHEHOICL E7 actions L OtL} BO| play3i=7t0] I:H of

2Kt matrlxg %X|OPO4, 42 7HX| 2 XA 9 actions
M EH

Yung Yi 43 ﬂ_'-ll
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Fictitious Play (mixed strategy)

e A learning rule is of the form

o
o —
[
P
~
p—
~
~\1
p—

pi(t+1) = f(a(l),a(2),...

e Define empirical frequencies ¢;(t) as follows:

How many a; are played until t

0 =L ) = )

e Fictitious play: Each player best responds to empirical frequencies
pi(t +1) € argmax u;(p;, g_i(t))
Pi€A(A;)

where

wi(pis q-i(t)) = Z ui(ay, ag, ..., an)p;’ H q;j(t)

acA JjFi
e FP facts: Beliefs (i.e., empirical frequencies) converge to NE for
— For 2-player games with 2 moves per player

— Zero sum games with arbitrary moves per player

— Potential games

Yung Yi 44
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App of FP 7 met
—momom

e FP requirements for distributed routing:

— Track empirical frequencies ¢;(t)

— Compute best response (focus on just pure strategies)

a;(t+ 1) € arg max Z ui(a;,a_;) Hq}l"(t)

a:EAi a_;cA_; jFi
e Question: How big is A_;?

— 2 moves, 2 players — 4 joint actions
— 2 moves, 3 players — 8 joint actions
— 2 moves, n players — 2" joint actions

— m moves, n players — m™ joint actions
e Problem #1: Computing best response computationally prohibitive
e Problem #2: Observing action profiles prohibitive

e Engineering perspective: Develop simple algorithms with similar guarantees
Yung Yi 45 ﬁ)l_
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Joint Strategy vs. Individual Strategy

e A
—
— Playeri2| YA ST | strategyS S OIC FHE 7| FS
S - &t 7{0

ot 74017 OfL| ™, A O MK E Stz E 0 g A Q1712
® Individual

— Fictitious play of the earlier slides
— Sometimes, called Brown’s FP (1951)

® Joint strategy
- O3EM = A.

® 2|7t XO|7F /U7 =2t AQl7 (=2 & A)

—

Yung Yi 46 M
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e Actual drivers do not select driving pattern by FP

S

Previous Day
Experience / Info

e Consider the following driver behavioral model

|

i

(i
T

Historic Perceptions
of Network Conditions
(Average Congestion)

mm
LI}

Updated Historic
Perceptions

Select Previous
Travel Pattern

Current Perceptions
NO

Select New

Models of
Behavior

e Description of model
— Let a,(t) be the route chosen by player i at day ¢
— Let V*(t) be the average congestion on route a; up to day ¢
1 a
(e, ate) + = DV = 1)

t
1 t
‘/z' l(t) - ;;ui(aiaa—

— Decision rule day ¢ + 1
a;i(t+1) = {
where € € (0, 1) is referred to as the player’s inertia

with probability €
with probability 1 — €

a;(t)
arg min, ¢ 4. V:*(t)

e Think of model as algorithm. Asymptotic guarantees?

Yung Yi 47



Yung Yi 48

LONQAOAO

Joint Strategy FP

e Previous algorithm similar to fictitious play

e Define z_;(t) as the empirical frequency of other player’s joint moves up to time ¢
1
24 (t) = - ; IH{a_i(T) = a_;}

La—i(t) a;(t)
Note that =7;"" # [, ¢;

e Key: Player views all other players as a single player with action set A_;

e Presumption: Each player presumes all other players playing collectively according to
joint strategy z_;(t)

e |s this tractable?

uila;, z_(t)) = Z ui(a;, a_;)z5 (t)

a_;eA;
L&
= ;;Ui(az a_i(7))
= V(@)
e JSFP w/ inertia restated:
a;(t) with probability €

az-(t—l—l):{

argmax,.e 4. U;(a;, 2_;(t))  with probability 1 — ¢

e Fact: JSFP w/ inertia converges almost surely to pure NE in (generic) potential games

_KmisT
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Generalized JSFP

gt (t) = — i D)

S ea T

® |f \gamma_i =1, then just a JSFP.

® We are going to look at another variant of JSFP.

KAIST



Logit Learning (cont’d)
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® ¢ (a;lx_i(1)) it @ A=i(©)
a, x_. —
q [ l e%iui (ag,x_i(t))

® Ify; > OisclosetoO,
— the learning rule closely approximates a best response.

® If y; becomes larger,
— the learning tends to a uniform distribution.

= y; : level of rationality of player i

® Logit equilibrium
- the limit of the logit learning procedure if it converges.

- €-Nash equilibrium

Yung Yi 50
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Logit Equilibirum

® |et q]i- be the prob. that player i chooses j'th action.
Given a distribution g* on A(A-) the amount of information

conveyed by qi Z q] In q (Shannon entropy function)

® Player i’s actual (or modified) utility U,

Ui(q' %) = wia' x_;) — qu,lnq,

Current payoff

Information

® Optimal (or maximizer ) qi is given by the Logistic function
— Please check!

Yung Yi 51 ﬂ_'-ll
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Convergence of Logit Learning

® A potential game is a case the logit learning converges.

® The convergence time to a n-Nash equilibrium under the logit

learning is of order K loglog K + log—;

Yung Yi 52 K’.“ST
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Taxonomy: Learning Algorithms

® Fully distributed (or Uncoupled) learning algorithm
— A player does not use information about the other players.

— Builds his strategies and updates them by using own-actions
and own-utilities.

— Can we even do something with this small information?
Maybe

® Partially distributed learning algorithm
— A player implements his updating rule after receiving some data about others.

— The amount and the kind of data may depend on each algorithm (We will discuss
this later)

Yung Yi 54 M
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® Trial and error learning

® Regret matching based learning

® Reinforcement learning

® Boltzmann-Gibbs learning
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Trial and Error Learning (TEL)

® Also, called Learning by Experimenting
® Environment

- All players do not know their utility functions, only the value
of the function at given stage is known.

® Procedure

1. Attimet,
* Playeriisinstate s;; = (a;¢ U;¢)
2. Att+l,

 Before choosing an action, each player i does experiment with
probability ; € (0,1)

* If he does not experiment, a; ;41 = a;;

«  Otherwise, he plays a; € A; drawn uniformly at random. Only if
received utility u; .4, is greater than old u; , he adopts the new state

_ !/
Sit+1 = (airui,t+1)
Yung Yi 57 M
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Convergence of TEL (Young 2009)

® Let G, be the set of all K-player games on the finite action
space A that has at least one pure Nash eq.

® [Theorem] If all players use interactive trial and learning and
the experimentation rate € is sufficiently small, then
for games in G, a Nash equilibrium is played at least

1- € proportion of the time.

Yung Yi 58 M
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Regret-Matching (Young 2000)

® Single-agent learning before multi-agent learning in game

e Setup:

— Two players: Player 1 vs. Nature
— Actions set: A and Ay
— Payoffs: u: Ay x Ay — R

Nature
Rain No Rain
Umbrella 1 0
" No umbrella 0 1

Player 1's Payoff

e Player repeatedly interacts with nature

— Player's action day t: a;(t)
— Nature's action day ¢: ay(?)
— Payoff day t: w(ai(t), an(t))

e Goal: Implement strategy that provides guarantees with regard to average performance?
Yung Yi 60 E’T_



LONQAOAO

Regret

e Challenge: Hard to predict what nature is going to do
e Thoughts: Can a player optimize “what if" scenarios?

e Definition: Player's average payoff at day ¢

~ | =

u(t) =

Y ufay(7), an(7))

=1

’

e Definition: Player's perceived average payoff at day ¢ if committed to fixed action and

nature was unchanged
t
1
na —
0 (t) = " E u(ay, an(7))

Cr=1

e Definition: Player’'s regret at day ¢ for not having used action ay

/al () = (1) —ult)

If this value is large, then | have to think “oh | have to choose a; more from now on”
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Yung Yi 62

e Example:

— u(6)7?

— 0Y(6)?
— VU (6)?
— RU(6)?
— RNU(6)?

Day 1 2|3 ]14]5 |6
Player's Decision | NU | U | NU | U | NU | NU
Nature's Decision| R |[NR| R |R|NR| R

Payoff o] 0|01 1]|O0

KAIST
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Regret-Matching Learning

e Positive regret = Player could have done something better in hindsight
e Q: Is it possible to make positive regret vanish asymptotically “irrespective” of nature?

e Consider the strategy Regret Matching: At day t play strategy p(t) € A(Ay)

[RY(t)]
. B +
pl(t+1) = [RV(1)], + [RNV(1)]
| [RNY(1)]
NU — v
pit(t+1) = [RU(t)]+ + [}?NU(t)]+

e Notation: [-]+ is projection to positive orthant, i.e., [z]+ = max{x,0}
e Strategy generalizes to more than two actions

e Fact: Positive regret asymptotically vanishes irrespective of nature

(A1), — 0

[RNU(1)], — 0
A randomized strategy with more probability

to the strategy with larger regret
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e Example revisited:

Day 1 | 2|3 14] 516
Player’'s Decision | NU | U | NU | U |[NU | NU
Nature's Decision| R |[NR| R |R|NR | R

Payoff O 0] 0 ]|1] 1710

— Regret matching strategy day 27
— Regret matching strategy day 37
— Regret matching strategy day 47
— Regret matching strategy day 57
— Regret matching strategy day 67

e \Why does positive regret vanish?
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More formally

® Learningrule pi(t+1) = f(a(0),a(l),....a(t); u;)

e Consider the learning rule f(-) where

(R ()],
Z&iEAi [R&i(t’)] +

— p;i'(t + 1) = Probability player i plays action a; at time t + 1

pi(t+1) =

— R{(t) = Regret of player i for action a; at time ¢
e Fact: Max regret of all players goes to 0 (think of other players as “nature”)

e Result restated: The behavior converges to a “no-regret” point
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Correlated Equilibrium (Remind)

et z € A(A) denote a probability distribution over the set of joint actions A.

that all players P; € P play independently according to their personal strategy p; € A(.A;), as was the case
in the definition of the Nash equilibrium, then

an

A0 a1, a2
Z —pl p.2 RN

Definition 1.3 (Correlated Equilibrium) The probability distribution z is a correlated equilibrium if for
all players P; € P and for all actions a;, a; € A;,

Z U,j(a.,j,a._.i)z(a"a"l)z Z U,'(a;-,a._i)z(a“a"l). (3)

a_,€A_,; a_,eA_,
® How to interpret?
— Joint action a is randomly chosen by Nature according to z
— Each player is informed of his action a;
— Each player has a chance to change his action g;

— Each player i’s conditional expected payoff for action g; is at least as
good as for other action a/
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Coarse Correlated Equilibrium

will discuss marginal distributions. Given the joint distribution 2 € A(.A), the marginal distribution of all
players other than player P; is
= E PAGHEEN

Definition 1.4 (Coarse Correlated Equilibrium) The probability distribution z is a coarse correlated equi-
librium if for all players P; € P and for all actions a); € A;,

Y Uia)2"= > Uilala_i)2?;. 4)
acA a_;€A_,;
® How to interpret?

— Before the joint action a is drawn, each player i is given the chance to
opt out, in which case she chooses any action beforehand

— If he does not opt out, then follow Nature’s suggestion
— No player choose to opt out given that all other players opt to stay in
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No-regret point? NE or what?

e Rewrite regret in terms of empirical frequency z(t) € A(A)

(1) = § 3or_y wila(r)) = ui(2(t))
OF(t) = 30y wilai ai(t)) = uilag, z_(t))

R (t) = 0{(t) — ui(t) = ui(as, z—i(t)) — ui(2(t))
e Characteristic of no-regret point

Rf;"(t) <0 & wi(a;,z (1)) <wu(z(t))

e No-regret point restated: For any player 7 and action a;
wi(ai, z—i(t)) < ui(=(t))

e No-regret point = Coarse correlated equilibrium

e Theorem: If all players follow the regret matching strategy then the empirical frequency
converges to the set of coarse correlated equilibrium.

Yung Yi 68 Ll‘_'-)l




Contents

LONQAOAO

® Trial and error learning

® Regret matching based learning

® Reinforcement learning

® Boltzmann-Gibbs learning

Yung Yi 69

_KmisT



LONAQOAQ

Introduction for Reinforcement Learning

® Basic idea: Reinforcement (Al & 2t?)
— The higher the payoff from taking an action in the past, the more likely it
will be taken in the future.

® Originally, developed for a single-agent situation (self-learning)

— A classical machine learning topic
e Supervised Learning
* Unsupervised Learning
* Reinforcement Learning

® Player only knows his past choices and perceived utilities.

® Using this information, each player tries to learn a strategy that
maximizes expected future reward.
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Bush & Mosteller Algorithm (1955) (1)

We will now describe the algorithm formally. Consider a finite game in strategic
form G = (X, (A;), (Uj);). Denote by A = [] iex A;j the set of strategy profiles, and by
x;j(a;) player j’s probability of undertaking action a; € A;. At each time #, each player
J chooses an action aj; and computes her stimulus s;, for the action just chosen a;,

according to the formula:

_ wj — M;
Sj,t — (68)
sup, |Uj(a) — M;]|

where u;,; denotes the perceived utility at time ¢ of player j, and M, is an aspiration

level of player j. Hence the stimulus is always a number in the interval [—1,1]. Note

Stimulus: How am | satisfied about a particular action (measured by my aspiration level)?

Positive—> above aspiration, Negative—> below aspiration
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Bush & Mosteller Algorithm (2)

that player j is assumed to know the denominator sup, |Uj(a) — M;j|. Secondly, having
calculated their stimulus 5;; after the outcome a;, each player j updates her probability
x;(s;), of undertaking the selected action a; as follows:

xjt(aj) + AjSj (1 — x5+ (ay)) if 55, >0

o (6.9
xj ¢ (a;) + s xi(aj) if 55, <0

Xjt+1 (aj) =

y

Learning rate

Larger stimulus = larger probability
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r Arthur’s Algorithm (1993) (1) 1

Consider a finite game § = (X, (Aj)jex, (i]j)jegc) in strategic form: X is the set of
players, A; is the set of strategies of player j, and (~Jj , ]_[j, Ay — R is a random
variable with expectation uj(a) = IE((~Jj(a)) which represents player j’s utility func-

players are repeatedly playing the same game G. At each time ¢, under reinforcement
learning, each player j is assumed to have a tendency «;,(a;) to each action ag; € A;.
Let x;(a;) be the probability placed by player j on action g; at time #. In the models

KAIST
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Arthur’s Algorithm (1993) (2)

of reinforcement learning, we consider that these probabilities are determined by the
choice rule pj,t(aj). = &j(Sj1s -5 8j,mj»Xjr) where. m; = |Ajl. |
Here we examine the case where the mapping g; can be written as:

aj(a;)”

Zsj'. (aj,,(sj’.)}’

To complete the reinforcement learning model, we need to define how to update
the tendencies x,.. In this simple model this is expressed as, if player j takes action g;
in period ¢, then his tendency for g; is increased by an increment equal to his realized
utility. All other tendencies are unchanged. Let u;; denote the random utility obtained
by player j in period ¢. Thus, we can write the updating rule:

, vy > 1. (6.11)

xj,t-{—l (aj) — xj"t(aj) + uj,t ]l{aj,t+1 =aj} (6.12)
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Boltzmann-Gibbs Learning (Partially Distributed)

® Recall:

Compare the above with:

Tui(apx_i(D)

[ . y .
qt(a;|x_;(t)) = - Logistic function
T » ey_i“i(ag'x—i(t)) (or Bolzmann-Gibbs
ajEA; Distribution)

Yung Yi 76 M



LONAQOA

Boltzmann-Gibbs Learning (Fully Distributed)

Bje(lij0) (a)) = _gicAj,jeX (6.24)

be emphasized. We assume that each player does not know his utility function, but
instead has an estimation of the average utility of the alternative actions. He makes
a decision based on this rough information by using a randomized decision rule
to revise his strategy. The effect on the utilities of the chosen alternative are then
observed, and used to update the strategy for that particular action. Each player only
experiments with the utilities of the selected action on that stage, and uses this infor-
mation to adjust his strategy. This scheme is repeated several times, generating a
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