Lanada.

Lecture 12: Cooperative Game Theory Nash Bargaining Solution

Yi, Yung (이용) KAIST, Electrical Engineering

> http://lanada.kaist.ac.kr yiyung@kaist.edu

Where We Are?

- Non-cooperative game theory
 - Various games
 - Normal-form game
 - Extensive-form game
 - Repeated game
 - Bayesian game
 - **—** ...
- Cooperative game theory
 - Bargaining (today)
 - Coalitional game

Introduction

- Introduction to cooperative game
- Bargaining solution
 - Nash Bargaining Solution
 - Kalai Smorodinsky Bargaining Solution
 - Rubinstein Bargaining Process
 - Examples
- Coalitional game

Cooperative Game Theory

- Underlying situation
 - Players have mutual benefit to cooperate

- Two categories
 - Bargaining problems
 - Coalitional game

Introduction to Bargaining

- Bargaining situation
 - A number of individuals have a **common** interest to cooperate (e.g., trade or sharing of resource), but a conflicting interest on **how to cooperate** (terms of agreement, 계약조건)

- Key tradeoff
 - Players wish to reach an agreement rather than disagree.
 - But, each player is self-interested

Introduction to Bargaining

- What is bargaining?
 - Process through which the players on their own attempt to reach an agreement
 - Can be tedious, involving offers and counter-offers, negotiations, etc.

 Bargaining theory studies these situations, their outcome, and the bargaining process

Examples

Painting

- Seller: values at 1000\$
- Buyer: values at 1500\$
- What's the final price?

- Shared resource among nodes
- How to share?
- Every node wants to get larger portion of resource

Introduction

- Key issues in bargaining
 - 1. The players must inspect efficiency and the effect of delay and disagreement on it, i.e., jointly efficient
 - They seek a jointly efficient mutual agreement
 - 2. Distribution of the gains from the agreement
 - Which point from the efficient set must the players select?
 - 3. What are the joint strategies that the players must choose to get the desired outcome?
 - 4. How to finally enforce the agreement?
- Link to game theory
 - Issues 1 and 2 are tackled traditionally by cooperative game theory
 - Issues 3 and 4 are strongly linked to non-cooperative game theory

Motivating Example (1)

Can be deemed unsatistifactory Given each Man's wealth!!!

Rich Man (Wealth = $$10^{10}$)

Poor Man (Wealth = \$10)

Motivating Example (2)

Can be deemed unsatistifactory Given each Man's wealth!!!

Rich Man (Wealth = $$10^{10}$)

Poor Man (Wealth = \$10)

- John Nash's approach
 - When presented with a bargaining problem such as the rich man – poor man case, how can we pick a reasonable outcome?
 - Interested in the outcome rather than the process
- The Nash Bargaining Solution was proposed in 1950 using an axiomatic approach and is considered as one of the key foundations of bargaining problems

Setup

- Consider two players for simplicity (i=1,2)
- ullet Outcome space $\mathcal{X} \cup \{D\}$
 - D: the outcome of disagreement
- ullet Utility function u_i on ${\cal S}$

$$\mathcal{S} = \{ (u_1(x_1), u_2(x_2)) \mid x = (x_1, x_2) \in \mathcal{X} \}$$

- Utility of disagreement $d = (d_1, d_2)$, where $d_i = u_i(D)$
- A Nash bargaining problem is defined by the pair (S,d)

- Can we find a *bargaining solution*, i.e., a function f that specifies a **unique** outcome $f(S,d) \in S$?
- Axiomatic approach proposed by Nash
 - Axiom 1: Feasibility
 - Axiom 2: Pareto efficiency
 - Axiom 3: Symmetry
 - Axiom 4: Invariance to linear transformation
 - Axiom 5: Independence of irrelevant alternatives

- Axiom 1: Feasibility
- Feasibility implies that
 - The outcome of the bargaining process, denoted (u^*, v^*) cannot be worse than the disagreement point $d = (d_1, d_2)$, i.e., $(u^*, v^*) \ge (d_1, d_2)$
 - Strict inequality is sometimes defined
- Trivial requirement but important: the disagreement point is a benchmark and its selection is very important in a problem!

- Axiom 2: Pareto efficiency
 - Players need to do as well as they can without hurting one another
- At the bargaining outcome, no player can improve without decreasing the other player's utility
 - Pareto boundary of the utility region
- Formally, no point $(u,v) \in S$ exists such that $u > u^*$ and $v \ge v^*$ or $u \ge u^*$ and $v > v^*$

- Axiom 3: Symmetry
 - If the utility region is symmetric around a line with slope
 45 degrees then the outcome will lie on the line of symmetry
 - Formally, if $d_1 = d_2$ and S is symmetric around u = v, then $u^* = v^*$
- Axiom 4: Invariance to linear transformation
 - The bargaining outcome varies linearly if the utilities are scaled using an affine transformation

The Nash Bargaining Solution

- Axiom 5: Independence of irrelevant alternatives
 - If the solution of the bargaining problem lies in a subset U of S, then the outcome does not vary if bargaining is performed on U instead of S
 - If the solution of a larger set is a member of a smaller set, then this solution is also the solution of the smaller set

 Theorem. Nash showed that there exists a unique solution f satisfying the axioms, and it takes the following form:

$$(u^*, v^*) = f(S, d) = \max_{(u,v) \in S} (u - d_1)(v - d_2)$$

When $d_1 = d_2 = 0$, this is equivalent to the famous solution of telecommunication networks: Proportional fairness

Known as the Nash product

- Considering logarithmic utilities and considering that what the men's current wealth is as the disagreement point
 - The Nash solution dictates that the rich man receives a larger share of the 100\$
- Is it fair?
 - Fairness is subjective here, the rich man has more bargaining power so he can threaten more to stop the deal
 - The poor man also values little money big as he is already poor!
 - Variant of the problem considers the 100\$ as a debt, and, in that case, the NBS becomes fair, the richer you are the more you pay!

The Nash Bargaining Solution

- The NBS is easily extended to the N-person case
 - The utility space becomes N-dimensional and the disagreement point as well
 - Computational complexity definitely increases and coordination on a larger scale is required
- Solution to the following maximization problem

$$(u_1^*, \dots, u_N^*) = f(S, d) = \max_{(u_1, \dots, u_N) \in S} \prod_{i=1}^N (u_i - d_i)$$

The Nash Bargaining Solution

- If we drop the Symmetry axiom we define the Generalize Nash Bargaining Solution
- Solution to the following maximization problem

$$(u_1^*, \dots, u_N^*) = f(S, d) = \max_{(u_1, \dots, u_N) \in S} \prod_{i=1}^N (u_i - d_i)^{\alpha_i}$$

Value between 0 and 1 representing the bargaining power of player *i* If equal bargaining powers are used, this is equivalent to the NBS

Nash Bargaining Solution – Summary

- The NBS/GNBS are a very interesting concept for allocating utilities in a bargaining problem
 - Provide Pareto optimality
 - Account for the bargaining power of the players but...
 - Can be unfair, e.g., the rich man poor man problem
 - Require convexity of the utility region
 - Independence of irrelevant alternatives axiom
 - Provide only a static solution for the problem, i.e., no discussion of the bargaining process
- Alternatives?
 - The Kalai Smorodinsky solution
 - Dynamic bargaining and the Rubinstein process

- The NBS is the static solution in the sense that we only care about the outcome
 - How about the bargaining process?
- Dynamic bargaining
 - Interested in the players interactions to reach an agreement
 - Broader than static bargaining, although linked to it
 - In this trial lecture, we cover the Rubinstein process although many others exists
- Famous one: Rubinstein Bargaining Process
 - There are other bargaining processes (a hot research topic in game theory)

Summary

