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® Two examples for motivating population games

® 1. Drawing an interesting situation from a symmetric normal-f
orm game

® 2. Non-atomic congestion game

® Generalization of population will follow soon
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Example 1: Hawk-Dove Game

Player 1/Player 2 Hawk Dove
ok ((v=0),i(v=c)) (v.0)
1,1

Dove (0, v) (2 v, 5 v)

e There is a resource of value v to be shared. If a player plays “Hawk," it
is aggressive and will try to take the whole resource for itself. If the
other player is playing “Dove,” it will succeed in doing so. If both
players are playing “Hawk,” then they fight and they share the resource
but lose ¢ in the process. If they are both playing “Dove,” then they
just share the resource.

® Interpret the payoffs as corresponding to fitness, e.g., greater
consumption of resources leads to more offspring
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Hawk-Dove Game: Wait! | saw this

Player 1/Player 2 Hawk Dove
Hawk  (A(v=c).1(v=c)) (v.0)
1,1

Dove (0,v) (3v,3v)

® Entire population is divided into the following portions depending o
n their strategy choices x = (x, x4)
— This can be understood as a mixed strategy profile in the normal form game

® Mixed Strategy NE?

® Ah-ha! In this case, a strategy is nothing but a vector of portions of human
sx = (xp, xq), where each portion corresponds to each strategy

® A person’s choice of a strategy s in the normal-form game == A portion of
people who chooses the strategy s
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Different Angle: Hawk-Dove Game

Player 1/Player 2 Hawk Dove
Hawk  ((v=0),i(v=c)) (v.0)
Dove (0,v) (3v,iv)

® Consider a society consisting of “many” (mathematically infinite) humans who
want to have more offspring

® Assume

— Each infinitesimal human is matched to play the game, where each pair of humans
meet exactly once.

— Entire population is divided into the following portions depending on their strategy
choices x = (xp, x4)

® What is the (average) payoff of choosing strategy “Hawk”?

® What is the (average) payoff of choosing strategy “Dove”?

® Maybe, using this way, we can understand how animals behave in the jungle?
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Another example: Congestion Game

® Three players from Sto T (A,B,C)
® a/b/c: cost when one/two/three players use that road
® Total cost of each player is the aggregate link cost over
its path
AB.C

AB,C
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Earlier Model

AB,C

AB,C

e F, a finite set of congestible elements.

e Players i € {1,...,n}, each with a strategy set S;, where each strategy P € S; is a
subset of E. (Each strategy choice ”congests” some of the congestible elements.)

e Delay functions d. > 0 for each e € E.

Further, given a set of strategy choices P; € S; for each player 7, we defined the following:

e The congestion on an element e, given by z. = |{i : e € P;}|, the number of players
congesting that element.

e The delay on each element e, given by d.(z.).

e The cost for each player 4, equal to 3 .cp de(z.), the sum of delays for all elements
used by that player.
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A different, yet similar congestion game

® Three classes (or types) from Sto T (A,B,C)
— Each class is a player
— Multiple classes are playing the game

® Each class has its mass, say 1; (equivalently the rate of traffic that needs to
be delivered by class i.

® Each class selects a strategy from the strategy set S;

@ Each class of players is allowed to distribute fractionally over the strategy
set

X

AB,C

AB,C
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Difference between Two Games

® Unsplittable (atomic) congestion game
— A finite number of users
— Each user chooses a path on which he transports all of his load

® Splittable (non-atomic) congestion game

— Treat traffic similarly to flow in a network where we can split up the
load to several paths

— Analogously, we can look it as (infinitely many users, where each user
controls infinitesimal portion of the total traffic

— This motivates a notion of “population game”

KAIST

More general stories will follow
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Contents

e Population Game: An approach to modeling recurring
strategic interactions in large populations of small
anonymous agents.

e Originally developed in biology to understand how the
animals interact, where they have different genetic
programs leading to varying levels of reproductive
success.

e Key words: population game, evolutionary dynamics,
ESS (Evolutionarily Stable Strategy)
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Population Game: When?

e The number of agents is large

e Individual agents are small: any single agent’s
behavior has no effect on others.

e Agents interact anonymously: Each agent’s payoffs
only depend on opponents’ behavior through the
distribution of their choices.

e Payoffs are continuous: Ensures that very small
changes in aggregate behavior do not lead to large
changes in strategies’ payoffs.

EE655, 2017 Spring, Yung Yi

Motivating Example:
Non-atomic Congestion Game

Recall this game!

® Three classes (or types) from Sto T (A,B,C)
— Each class is a player
— Multiple classes are playing the game

® Each class has its mass, say 7; (equivalently the rate of traffic that needs to
be delivered by class i.

® Each class selects a strategy from the strategy set S;

® Each class of players is allowed to distribute fractionally over the strategy
set

X

ABC

ABC
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Population Game: Population, Strategies,
and States

e P={1,2,3,...,p}: Asociety that has p populations (or
classes, or types)

Ex) society: USA, population 1: Texas, population 2:
California

Ex) Non-atomic congestion game?

Agents in population p € P form a continuum of mass
mP > 0.

Ex) Non-atomic congestion game?
e §7 ={1,...,n"}: the set of (pure) strategies available to
agents in population p.
o Ex. S = {sell, buy}, S? = {study, play}.
Ex) Non-atomic congestion game?
o n =3 ,pn’: total number of pure strategies in all
populations
Ex) Non-atomic congestion game?
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e The set of population states (or strategy distributions)
for population p is X? = {x? € RY : Yc5p X7 = mP}.

In population p, how many people are using each
strategy?

Ex) Non-atomic congestion game?

e The set of social states: X = [],ep X?
Ex) Non-atomic congestion game?
e The special case when p = 1, i.e., a single population:
We omit the superscript p, and use
X
S ={1,...,n}

EE655, 2017 Spring, Yung Yi 5



Payoffs

e FP: X — R: payoff function for strategy i € S?
i

Note: Payoff is not the one for each player in the earlier
cases. Payoff is the one for each strategy.

e F?: X — R": payoff functions for all strategies in S*.
e A payoff function: F : X — R"is a continuous map that

assigns each social state a vector of payoffs, one for
each strategy in each population.

Ex) Non-atomic congestion game?

e Note: For a single population, we just use F; and F.
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Example 1: Matching in Normal Form Games
(Symmetric)

e Method 1: Obtaining a population game from this
normal form game

e A symmetric two-player normal form game,
represented by a matrix A € R>"

1 2 3

1| An,An | Ap,Az | Az, Az
2 | Ay, A | Ay, Ay | Az, Az
3 | A3, A1 | Az, Az | Ass, Ass

e Agents in a single population are matched to play A,
with each pair of agents meeting exactly once.

e Aggregating payoffs over all matches, the payoff to
strategy i for the population state x

Fi(%) = Yjes Aijxj = (Ax);
e The population game is described by F(x) = A - x
e F(x) = A - x’s another interpretation: Each agent is

randomly matched against a single opponent. Then,
the expected payoffis ...
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Example 2: Matching in Normal Form Games
(Asymmetric)

e An asymmetric two-player normal form game,
represented by a matrix A € R"™", two strategy sets
St={1,...,n'},and S%? =11,...,n%}.

1 2 3

2 1 2 1 2
U | U Uy | U Uy
U21 U22’ U22 U23’ U23

T
1 U%p
2|U,,

e Two unit mass, each corresponding to each player role.

e Each agent is matched with every member of other
population to play the game (U', U?), or one can
assume that each agent is randomly matched with a
single member of the other population.

e The payoff functions for populations 1 and 2 are given
by: Fl(x) = U'x? and F?(x) = (U?)'x".

EE655, 2017 Spring, Yung Yi 8

Example 2: (Non-atomic) Congestion Game

e Method 2: Obtaining a population game from “playing
in the field”

e A collection of nodes is connected by a network of
links. For each ordered pair of towns there is a
population of agents, each of whom needs to transfer
data from the first node in the pair to the destination.

e An agent must choose a path connecting two nodes in
the pair.

e A finite collection of links ®.

e Each strategy i € S? requires the use of some
collection of links (i.e., path) (I)f C @. The set
pP(¢) = {i € SP : ¢ € ®}: contains those strategies in
S? that require link ¢.

e Each link ¢ has a cost function ¢4 : R, — R whose
argument is the link’s utilization level u, the total mass
of agents using the link, i.e.,

ug(x) = Z Z x!.

PEP icpP(¢)
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e Payoffs are:

FI(0) == ) cplug(x)

4
Pped;

e Compare the congestion game modeled by a
population game approach and that modeled by a
normal game (see the previous potential game lecture
on congestion game).
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LONAOAQ

http://lanada.kaist.ac.kr
yiyung@kaist.edu




LONAQOoQ

Nash Equilibrium of Population Game

® Essentially,

® [t's equal to finding the mixed NEP of the game

— Social states refer to the probabilistic distribution over the strategies o
f all populations

® But, there exists other notions of equilibrium that is worth co
nsidering
— Evolutionary stable strategy

KAIST

Best Response and Nash Eq.

e b? : X — SP: population p’s pure best response
correspondence, specifying the strategies (i.e.,
set-valued function) that are optimal at each social
state x:

bP(x) € arg max F7(x).
icSP

Note: This is arg max over S”.

Note: This does NOT mean that all agents in each
population chooses a singe strategy.

e Let A? be the simplex in R, i.e.,

AP:{yPeR';":Zy;’=1}.

ieSpP

The mixed best response correspondence for
population p, B? : X +— AP is given by:

BP =y’ €N :y’ >0 ieb (),

BP(x) is the set of prob. distributions in A? whose
supports only contain pure strategies that are optimal
at x (otherwise, contradiction!). BP(x) is the convex hull
of the vertices of A? corresponding to elements of
bP(x).



e Social state x € X is a Nash equilibrium of the game F
if each agent in every population chooses a best
response to x:

NE(F)={xe X : x» e mPBP(x) for all p € P}

Note: Here, a population state is the NE, not a strategy
vector.

Note: Thus, at NE, for the given population state, the
fractions of choosing “optimal” strategies are exactly
equal to the fractions expressed by NE.

e Exercise 1. Find the NE of the population game
defined by the following normal form game:

(1)
1,1 0,0
0,0 2,2

@)
2,2 0,3
3,0 1,1

LONAQOQ

Again: Hawk-Dove Game (was a HW prob.)

Player 1/Player 2 Hawk Dove
Hawk  (2(v—c).2(v=c)) (v0)
Dove (0, v) (3v,3v)

e If v > c, then there is a unique strict Nash equilibrium, which is
(Hawk, Hawk).

o If v = c, then there exists a unique Nash equilibrium, (Hawk, Hawk),
though this is not a strict Nash equilibrium.

o If v < ¢, then there exists three Nash equilibria: (Hawk, Dove) and
(Dove, Hawk), which are non-symmetric strict equilibria, and a mixed
strategy symmetric equilibrium.
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Evolution in the H-D Game

e If v > c, then we expect all agents to choose “Hawk". Those who do
not will have lower fitness.

o A different way of thinking about the problem: imagine a population
of agents playing “Dove” in this case.

@ Suppose there is a mutation, so that one agent (or a small group of
agents) starts playing “Hawk”.

@ This latter agent and its offspring will invade the population, because
they will have greater fitness.

@ The notion of evolutionarily stable strategies or evolutionary stability

\’—

follows from this reasoning.

KAIST

Invasion

¢ In a population game F, state y can weakly invade
state x if (y — x)’F(x) > 0 (i.e., Y F(x) > X' F(x)).
“Strongly” is the case of strict inequality.

e Interpretation: Consider a single population of agents
who play the game F and whose initial behavior is
described by state x € X.

Now imagine that a very small group of agents decide
to switch strategies. After these agents select their new
strategies, the distribution of choice within their group
is described by y € X.

But, since the group is so small, the impact of its
behavior on the overall population state is negligible
(That's why we have F(x) at LHS and RHS)

Thus, the average payoff in the invading group (i.e.,
Y F(x)) is at least as high as that in the incumbent
population (i.e., x' F(x)).



ESS (Evolutionarily Stable Strategy)

e A different solution concept from NE (So, your
question: relation between ESS and NE? We will look
at this later)

¢ In the single population game F, x € X is an ESS of F if
there is a neighborhood O of x such that
YF(y) < XF(y)forally € O - {x}.

» Locally stable

e Equivalent definition (Can you visualize why this is
true?).
There is an € > 0 such that the following equation holds
forally e X — {x} and € € (0,€) :

YF(ey+ (1 -€)x) < xX'F(ey + (1 — €)x)

e You can find the following definitions in other books,

Consider a two player, symmetric strategic form game
with the payoff function u. A (possibly mixed) strategy is
o € Z, where X is the set of all mixed strategies.

Definition. A strategy o* € X is evolutionarily stable if
there exists € > 0, such that for any o- # o* and for any
€ < €, we have

u(oc*,ec + (1 —€)o™*) > u(o, eo + (1 — €)a™)

e Consider a population game from a symmetric
two-player normal-form game G. Then, from the
properties of expectation,

(1 = eu(o™,0™) + eu(c™,0) > (1 — u(o, o) + eu(o, o)

e The above only needs to hold for small €, this is
equivalent requiring that either

u(c™, o) > u(o, o), (1)
or else,

u(c*,0*) = u(o,o"),

u(o,o®) > u(o, o). (2)

e Thus, ESS implies NE.

@ Interpretation: An evolutionarily stable strategy ¢ is a Nash
equilibrium. If 0™ is not a strict Nash equilibrium, then any other
strategy o that is a best response to 0* must be worse against itself
than against o*.

Homework: Prove that the above things are equivalent.
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ESS and NE

Theorem

@ A strict (symmetric) Nash equilibrium of a symmetric game is an
evolutionarily stable strategy.

@ An evolutionarily stable strategy is a Nash equilibrium.

KAIST
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Monomorphic vs. Polymorphic

e Monomorphic. Populations whose members all choose
the same strategy—but allowed this common strategy
to be a mixed strategy.

Comparison between two different (mixed) strategies.
e Polymorphic. Mass (or number of people) which
chooses a pure strategy i for each strategy i.

Comparison between two different populations
(incumbent and invading).
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Back to: Hawk-Dove Game

Player 1/Player 2 Hawk Dove
Hawk  (L(v—c),2(v=c)) (v0)
1,1

Dove (0,v) (2 v, 5 v)
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