Lanada-

Lecture 9: Repeated Game

Yi, Yung (이용) **KAIST, Electrical Engineering**

> http://lanada.kaist.ac.kr yiyung@kaist.edu

> > Lanada:

Prisoner's Dilemma

	Cooperate	Defect
Cooperate	1, 1	-1, 2
Defect	2, -1	0,0

- What about playing this game iteratively?
- Iterative Prisoner's Dilemma
- A special form of dynamic games
- Difference from the earlier extensive form game, or stackelberg game?

Basic Terminologies

Dynamic/Static Game

• Game in which we have sequence of moves or not

• Complete/Incomplete Information

• Games in which the strategy space and player's payoff functions are common knowledge, or not

• Perfect/Imperfect Information

- Each move in the game the player with the move knows the full history of the game thus far.
- At some move the player with the move does not know the history of the game.
- Typically used for dynamic games

Lanada

Motivation

	Cooperate	Defect
Cooperate	1, 1	-1, 2
Defect	2, -1	0,0

- Consider this strategy S:
 - Start with C, and choose C as long as the other player chooses C
 - If in any period the other player chooses D, then choose D in every subsequent period
- Outcome example
 - (C,C), (C,C), (C,C) ... (C,D) (D,D) (D,D) ...
 - Why player 2 can choose D in (C,D)? For a short-term gain
 - The strategy S means that I will punish you if you defect!
- If a player value the present more highly than the future, she may or may not choose defect.
 - How patient is a player?

What is Repeated Game?

	L ₂	R_2	
L_1	1,1	5,0	
R_1	0,5	4,4	

	L ₂	R_2
L_1	1,1	5,0
R_1	0,5	4,4

	L ₂	R_2
L_1	1,1	5,0
R_1	0,5	4,4

.....

- A game is repeated multiple times, say 10 times.
 - 한번만 할 것이라면, L_i 를 선택하겠지만, 여러 번 할 것이라면, R_i 를 선택하여서, "협조"를 구해보는 것도...
 - 만약, 협조하다가 배신하면, 내가 너를 "응징"하리...

KAIS

Lanada =

Terminologies

- Repeated games: given a simultaneous-move game G, a repeated game of G is an extensive game with perfect information and simultaneous moves in which a history is a sequence of action profiles in G. I will denote the repeated game, if repeated T times, as G^T .
- G is often called a stage game, and G^T is called a supergame.

What is Repeated Game?

	L ₂	R_2	
L_1	1,1	5,0	
R_1	0,5	4,4	

	L ₂	R_2
L_1	1,1	5,0
R_1	0,5	4,4

	L ₂	R_2
L_1	1,1	5,0
R_1	0,5	4,4

......

- In ongoing relationships, the promise of future rewards and the threat of future punishments may sometimes provide incentives for good behavior (i.e., cooperation) today. (Nobel prize!)
- T: Period of a repeated game
 - Finite case
 - Infinite case

KAI51

Lanada

Payoffs of a repeated game

- A player gets a payoff from each stage game, so her total payoff from the supergame is the discounted sum of the payoffs from each stage game.
- Let's call a sequence (with T periods) of action profiles as $(a_1, a_2,...a_T)$, then a player i's total payoff from this sequence, when her discount factor is δ , is

$$u_i(a_1) + \delta u_i(a_2) + \delta^2 u_i(a_3) + ... + \delta^{T-1} u(a_T) = \sum_{t=1}^T \delta^{t-1} u_i(a_t).$$

• If the sequence is infinite, then the discounted sum is $\sum_{t=1}^{\infty} \delta^{t-1} u_i(a_t).$

Discounting: Rationale

- Discounting: people value \$100 tomorrow less than \$100 today (Why? Interest rate; the world may end tomorrow.)
- The **discount factor** δ ($0 \le \delta \le 1$) denotes how much a future payoff is valued at the current period, or how patient a player is.
 - \triangleright If a player has a δ of .8, then \$100 tomorrow is equivalent to \$80 today for her.
 - \bullet Or, I continue this game with probability δ and end this game with probability $1-\delta$

KAIST

Finite Repeated Game:

Unique NE in the stage game

Dividing Cases

- Finite repeated game
 - (Case 1) A stage game has unique NE
 - (Case 2) A stage game has multiple NEs
- (Case 3) Infinite repeated game
- In this lecture, in most of examples,
 - Use Prisoner's dilemma as a stage game
- Assumptions
 - Perfect monitoring: At each period, the outcomes of all past periods a re observed by all players

KAIS1

Lanada

Finitely-repeated PD

	С	D
С	2,2	0,3
D	3.0	1.1

- What happens if this game was played $T < \infty$ times?
- We first need to decide what the equilibrium notion is. Natural choice, subgame perfect Nash equilibrium (SPE).
- Recall: SPE \iff backward induction.
- Therefore, start in the last period, at time T. What will happen?

- In the last period, "defect" is a dominant strategy regardless of the history of the game. So the subgame starting at T has a dominant strategy equilibrium: (D, D).
- Then move to stage T-1. By backward induction, we know that at T, no matter what, the play will be (D,D). Then given this, the subgame starting at T-1 (again regardless of history) also has a dominant strategy equilibrium.
- With this argument, we have that there exists a unique SPE: (D, D) at each date.
- In fact, this is a special case of a more general result.

KAIST

Lanada =

Thus, we have ...

Theorem

Consider repeated game $G^T(\delta)$ for $T < \infty$. Suppose that the stage game G has a unique pure strategy equilibrium a^* . Then G^T has a unique SPE. In this unique SPE, $a^t = a^*$ for each t = 0, 1, ..., T regardless of history.

Proof: The proof has exactly the same logic as the prisoners' dilemma example. By backward induction, at date T, we will have that (regardless of history) $a^T = a^*$. Given this, then we have $a^{T-1} = a^*$, and continuing inductively, $a^t = a^*$ for each t = 0, 1, ..., T regardless of history.

 In this case, no cooperation appear even if we repeat the game.

	С	D
С	2,2	0,3
D	3,0	1,1

Lanada

Period:	1	 t-1	t 1	t+1	·	T
(s_1, s_2) :	a^1	 a^{t-1}	(C,X)	(D,D)		(D,D)
Relation between player 1's payoffs:	II	 Ш	^			\wedge I
(s'_1, s_2) :	a^1	 a^{t-1}	(D, X)	(D,?)		(D,?)

KAIST

Infinite Repeated Game:

What happens if we don't know when the game would end?

Intro

- An infinitely repeated game usually has more SPNEs than a finitely repeated game, and it may have multiple SPNEs even if the stage game has a unique NE.
- But playing the NE strategies in each stage game, regardless of history, is still a SPNE in the infinitely repeated game.
 - ▷ So each player choosing defection is a SPNE in infinitely repeated PD as in finitely repeated PD.
 - ▶ But there are other SPNEs in infinitely repeated PD.
 - Our interest: Strategies inducing cooperation is SPNE or not

KAIST

Lanada

What does TFT do when playing against these strategies?

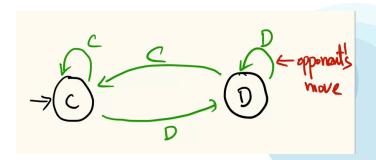
	С	D
С	2,2	0,3
D	3,0	1,1

Stategres	always defect	eluays coopeate	C-D-D-D	C-D-C-D-···
always defect				
always cooperate				
TFT				
D-(-D-(-D				

Strategy: Tit-for-tat

C D C 2,2 0,3 D 3,0 1,1

- TFT strategy
 - Play C first,
 - Then, do whatever the other play did in the previous period



KAIST

Lanada

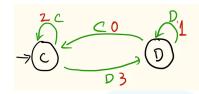
Which is better response to TFT?

	С	D
С	2,2	0,3
D	3,0	1,1

- Always D = D, D, D, D, ...
 - Payoff = $3 + \delta/(1 \delta)$
 - Good for low γ
- Always C = C, C, C, C, ...
 - Payoff = $2 * 1/(1 \delta)$
 - Good for high γ
- For what value of γ , are they equally good? 1/2

• Edge: my choice

• Edge label: my payoff

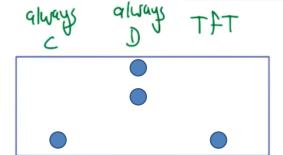


Given strategies

always C

glways D

ŤŦT



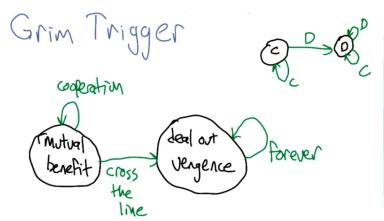
What are NEPs? Is there cooperation in some NEP?

KΔIS

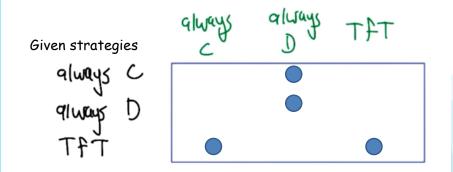
Lanada =

Strategy: Grim Trigger (GT)

- Start with C
- Then, play C if opponent has played D, and play D otherwise
 - Draconian policy



Cooperation in Infinite Repeated Game



What are NEPs? Is there cooperation in some NEP? Why?

TFT is still a NEP for small δ ?

KAI5

Lanada =

Lanada =

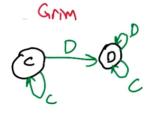
Grim Trigger: NEP

• Under what conditions of δ , (GT,GT) is a NEP?

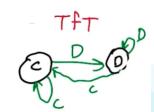
KAIST

Incredible Threat (NE but not SPNE)

• Consider a strategy (GT, TFT) as follows:



VS.



• Is this NE?

• Is this SPNE?

KAIST

Lanada •

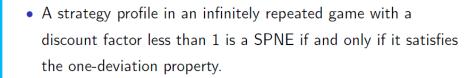
TFT: SPNE

• Under what δ , (TFT,TFT) is a SPNE?

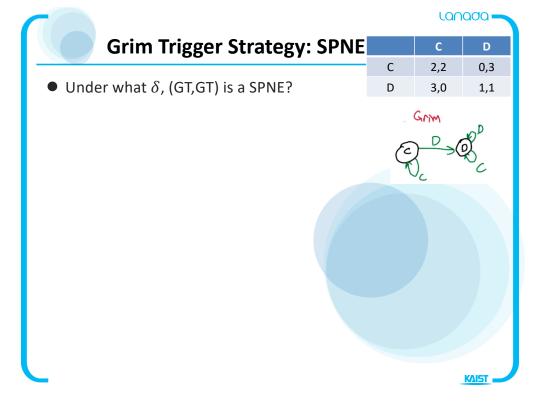
	С	D
С	2,2	0,3
D	3,0	1,1

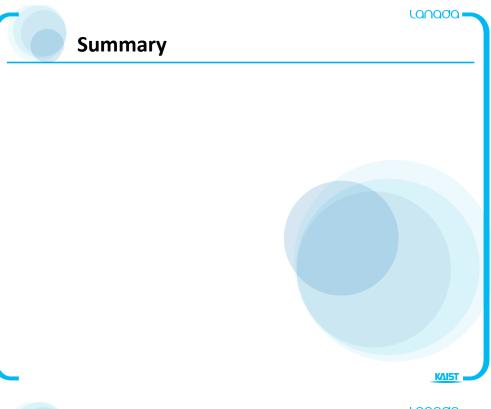
Checking SPNE Easily: One Deviation Property

• One-deviation property: no player can increase her payoff by changing her action at the start of any subgame in which she is the first-mover, given the other players' strategies and the rest of her own strategy.



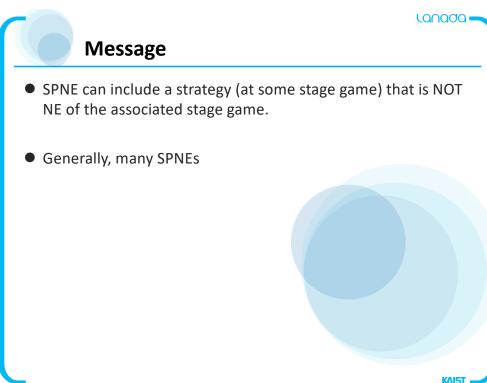
KAIST





Finite Repeated Game:

Multiple NEs in the stage game



Example: Extended PD

	Cooperate	Defect	Punish
Cooperate	4,4	0,5	0,0
Defect	5,0	1,1	0,0
Punish	0,0	0,0	3,3

- Cooperate = Quiet (묵비권),
- Defect (배반) = Fink (고자질)
- What are the NEs? (D,D) and (P,P)
- Play twice, i.e., T=2
- We will see
 - Even for the known ends, still cooperation helps
 - "Like to sustain (C,C)", which is not an NE of the one-shot game

KAIST

How to check a strategy is SPNE?

- One deviation principle, i.e.,
- "Assuming that other players are playing Yung, what happens if I deviate?"
- If I get a larger payoff (by deviation), than Yung is not an SPNE
- If I get a smaller payoff (by deviation), than Yung is an SPNE.

Strategy "Yung" that is SPNE

- Strategy "Yung"
 - Play C and then
 - Play P if (C,C), and Play D otherwise
- Is "Yung" a strategy?
- Is "Yung" a SPNE? Yes!

Lanada

What happens if I deviate?

- I deviate?
 - In other words, I don't play C, but D (no reason to play P)
 - Why? Temptation to cheat because of an increasing payoff present (현실 에 눈이 어두워서...)
- If I play C (i.e., playing Yung)
 - $-C \rightarrow 4(C,C) + 3(P,P) = 7$
- If I deviate and play D (i.e., playing some other strategy)
 - $-D \rightarrow 5(D,C) + 1(D,D) = 6$
- Temptation to cheat $(5-4=1) < \text{reward} \text{punishment} (3-1=2) \rightarrow Is$ hould not have deviated
- (C,C) is reward, and (B,B) is punishment
- Yung is a SPNE
 - C,P,P,P,P....

Lanada •

Lanada •

One Deviation Property

- One-deviation property: no player can increase her payoff by changing her action at the start of any subgame in which she is the first-mover, given the other players' strategies and the rest of her own strategy.
- One-deviation property of SPNE of finite horizon games: A strategy profile in an extensive game with perfect information and a finite horizon is a SPNE if and only if it satisfies the one-deviation property.

One Deviation Property

- One-deviation property of SPNE of finite horizon games: A strategy profile in an extensive game with perfect information and a finite horizon is a SPNE if and only if it satisfies the one-deviation property.
- A strategy profile in an infinitely repeated game with a discount factor less than 1 is a SPNE if and only if it satisfies the one-deviation property.
- One-deviation property: no player can increase her payoff by changing her action at the start of any subgame in which she is the first-mover, given the other players' strategies and the rest of her own strategy.

KAIST