

Lecture 6: Playing with Equilibrium

Yi, Yung (이용) KAIST, Electrical Engineering http://lanada.kaist.ac.kr yiyung@kaist.edu

Existence and Uniqueness

• Sufficient conditions for existence and uniqueness

• This lecture

- A little bit mathematical
- But, we focus on just intuitions and results, rather than rigorous proofs

Note

- Many NE existence and uniqueness proofs do NOT directly follow thes e sufficient conditions, but they sometimes use other techniques (e.g., directly follow the definition of NE, etc).
- But, it's useful to know that there exist these sufficient conditions.

Existence

- Mathematically,
 - Existence of NE: a fixed-point problem

– Why?

Definition 9 The best response function $b_i(s_{-i})$ of a player *i* to the profile of strategies s_{-i} is a set of strategies for that player such that

$$b_i(\mathbf{s}_{-i}) = \{ \mathbf{s}_i \in \mathcal{S}_i \mid u_i(\mathbf{s}_i, \mathbf{s}_{-i}) \ge u_i(\mathbf{s}'_i, \mathbf{s}_{-i}), \forall \mathbf{s}'_i \in \mathcal{S}_i \}.$$
(3.5)

Proposition 1 A strategy profile $s^* \in S$ is a Nash equilibrium of a noncooperative game if and only if every player's strategy is a best response to the other players' strategies, that is:

$$s_i^* \in b_i(s_{-i}^*)$$
 for every player i. (3.6)

Existence

 Many sufficient conditions for existence based on the existen ce of the solution of FPT (fixed point theorems).

In the previous homework,

- Pricing-congestion game
- Infinitely many pure strategy space
- Depending on the situation, pure strategy NEs may or may not exist.

Finite Game

- Pure strategy (Prisoner's Dilemma, Matching Pennies etc)
 - NE may exists
 - NE can be unique
 - No NE

• Mixed Strategy

Theorem

(Nash) Every finite game has a mixed strategy Nash equilibrium.

• What about infinite games?

Finite Potential Game

Theorem (Rosenthal (73))

Every congestion game is a potential game and thus has a pure strategy Nash equilibrium.

• Do you remember?

Pure NE Existence for Infinite Game

Theorem

(Debreu, Glicksberg, Fan) Consider a strategic form game $\langle \mathcal{I}, (S_i)_{i \in \mathcal{I}}, (u_i)_{i \in \mathcal{I}} \rangle$ such that for each $i \in \mathcal{I}$

- S_i is compact and convex;
- $u_i(s_i, s_{-i})$ is continuous in s_{-i} ;
- u_i (s_i, s_{-i}) is continuous and concave in s_i [in fact quasi-concavity suffices].

Then a pure strategy Nash equilibrium exists.

Existence of Mixed NE for Infinite Game

Theorem

(Glicksberg) Consider a strategic form game $\langle \mathcal{I}, (S_i)_{i \in \mathcal{I}}, (u_i)_{i \in \mathcal{I}} \rangle$ such that for each $i \in \mathcal{I}$

- S_i is a nonempty and compact metric space;
- $u_i(s_i, s_{-i})$ is continuous in s.

Then a mixed strategy Nash equilibrium exists.

Infinite Potential Game

• Theorem (existence)

- For infinite potential game (with a finite number of players, a pure str ategy NE exists if:
 - *S_i* are compact
 - The potential function Φ is upper semi-continuous on S

Theorem (uniqueness)

- For infinite potential game (with a finite number of players, a pure strategy NE exists if:
 - *S_i* are compact and convex
 - The potential function Φ is is a continuously differentiable on the interior of S and concave on S

Aside: For infinite potential games

• What is the condition for a game to be a potential game?

Proposition

Let G be a game such that $S_i \subseteq \mathbb{R}$ and the payoff functions $u_i : S \to \mathbb{R}$ are continuously differentiable. Let $\Phi : S \to \mathbb{R}$ be a function. Then, Φ is a potential for G if and only if Φ is continuously differentiable and

 $\frac{\partial u_i(s)}{\partial s_i} = \frac{\partial \Phi(s)}{\partial s_i} \qquad \text{for all } i \in \mathcal{I} \text{ and all } s \in S.$

Uniqueness of NE for General Games

• If the best response can be computed with a closed form

- When players' utilities are concave, Rosen [1965]

- If the best responses are known with a closed form
 - Find the intersection points (generally applied in many cases)
- Just do it and try to prove from your gut feeling
 - For example, suppose that we have two NEPs.
 - Assume they are different \rightarrow find a contradiction

Summary

Better-reply Secure (BRS) [Reny 1999]

- Generally, the FPT conditions are well known for the case whe n the utility functions are continuous w.r.t. the strategy profile s
- This condition is a generalized version of those.

Theorem

(Debreu, Glicksberg, Fan) Consider a strategic form game $\langle \mathcal{I}, (S_i)_{i \in \mathcal{I}}, (u_i)_{i \in \mathcal{I}} \rangle$ such that for each $i \in \mathcal{I}$

- S_i is compact and convex;
- $u_i(s_i, s_{-i})$ is continuous in s_{-i} ;
- u_i (s_i, s_{-i}) is continuous and concave in s_i [in fact quasi-concavity suffices].

Then a pure strategy Nash equilibrium exists.

Recursive Diagonally Transferable Continuous (RDTC) Games

- This is necessary & sufficient condition
- [Tian 2009] Very recently developed
- Very nice to prove that there does not exist NE
- Sufficiency: much more complex than, for example, quasi-con cavity, may not be very, very useful, but we don't know

Potential and Supermodular games

 Do you remember that we have already talked some existenc e and uniqueness conditions?

