Lanada-

Lecture 6: Playing with Equilibrium

Yi, Yung (이용) KAIST, Electrical Engineering

http://lanada.kaist.ac.kr yiyung@kaist.edu

- Mathematically,
 - Existence of NE: a fixed-point problem
 - Why?

Definition 9 The best response function $b_i(s_{-i})$ of a player i to the profile of strategies s_{-i} is a set of strategies for that player such that

$$b_i(s_{-i}) = \{ s_i \in S_i \mid u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i}), \ \forall s_i' \in S_i \}.$$
 (3.5)

Proposition 1 A strategy profile $s^* \in S$ is a Nash equilibrium of a noncooperative game if and only if every player's strategy is a best response to the other players' strategies, that is:

$$s_i^* \in b_i(s_{-i}^*) \text{ for every player } i.$$
 (3.6)

Existence and Uniqueness

- Sufficient conditions for existence and uniqueness
- This lecture
 - A little bit mathematical
 - But, we focus on just intuitions and results, rather than rigorous proofs
- Note
 - Many NE existence and uniqueness proofs do NOT directly follow thes
 e sufficient conditions, but they sometimes use other techniques
 (e.g., directly follow the definition of NE, etc).
 - But, it's useful to know that there exist these sufficient conditions.

K/\IS

Lanada

Existence

- Many sufficient conditions for existence based on the existence of the solution of FPT (fixed point theorems).
- In the previous homework,
 - Pricing-congestion game
 - Infinitely many pure strategy space
 - Depending on the situation, pure strategy NEs may or may not exist.

KAIST

Finite Game

- Pure strategy (Prisoner's Dilemma, Matching Pennies etc)
 - NE may exists

- NE can be unique

No NE

		Head	Tail
P1 .	Head	1,-1	-1,1
	Tail	-1,1	1,-1

P2

Mixed Strategy

Theorem

(Nash) Every finite game has a mixed strategy Nash equilibrium.

• What about infinite games?

KAIS1

Lanada •



Pure NE Existence for Infinite Game

Theorem

(**Debreu, Glicksberg, Fan**) Consider a strategic form game $\langle \mathcal{I}, (S_i)_{i \in \mathcal{I}}, (u_i)_{i \in \mathcal{I}} \rangle$ such that for each $i \in \mathcal{I}$

- S_i is compact and convex;
- $u_i(s_i, s_{-i})$ is continuous in s_{-i} ;
- $u_i(s_i, s_{-i})$ is continuous and concave in s_i [in fact quasi-concavity suffices].

Then a pure strategy Nash equilibrium exists.

Finite Potential Game

Theorem (Rosenthal (73))

Every congestion game is a potential game and thus has a pure strategy Nash equilibrium.

• Do you remember?

KAIS1

Lanada

Existence of Mixed NE for Infinite Game

Theorem

(Glicksberg) Consider a strategic form game $\langle \mathcal{I}, (S_i)_{i \in \mathcal{I}}, (u_i)_{i \in \mathcal{I}} \rangle$ such that for each $i \in \mathcal{I}$

- \bigcirc S_i is a nonempty and compact metric space;
- \bullet $u_i(s_i, s_{-i})$ is continuous in s.

Then a mixed strategy Nash equilibrium exists.

Infinite Potential Game

Theorem (existence)

- For infinite potential game (with a finite number of players, a pure str ategy NE exists if:
 - S_i are compact
 - The potential function Φ is upper semi-continuous on S

Theorem (uniqueness)

- For infinite potential game (with a finite number of players, a pure strategy NE exists if:
 - S_i are compact and convex
 - The potential function Φ is is a continuously differentiable on the interior of S and concave on S

KAIST

Lanada •

Uniqueness of NE for General Games

- If the best response can be computed with a closed form
 - When players' utilities are concave, Rosen [1965]
- If the best responses are known with a closed form
 - Find the intersection points (generally applied in many cases)
- Just do it and try to prove from your gut feeling
 - For example, suppose that we have two NEPs.
 - Assume they are different → find a contradiction

Aside: For infinite potential games

• What is the condition for a game to be a potential game?

Proposition

Let G be a game such that $S_i \subseteq \mathbb{R}$ and the payoff functions $u_i : S \to \mathbb{R}$ are continuously differentiable. Let $\Phi : S \to \mathbb{R}$ be a function. Then, Φ is a potential for G if and only if Φ is continuously differentiable and

$$rac{\partial u_i(s)}{\partial s_i} = rac{\partial \Phi(s)}{\partial s_i}$$
 for all

for all $i \in \mathcal{I}$ and all $s \in \mathcal{S}$.

KAI5

Lanada

Summary

Better-reply Secure (BRS) [Reny 1999]

- Generally, the FPT conditions are well known for the case whe n the utility functions are continuous w.r.t. the strategy profile s
- This condition is a generalized version of those.

Theorem

(**Debreu, Glicksberg, Fan**) Consider a strategic form game $\langle \mathcal{I}, (S_i)_{i \in \mathcal{I}}, (u_i)_{i \in \mathcal{I}} \rangle$ such that for each $i \in \mathcal{I}$

- S_i is compact and convex;
- \bullet $u_i(s_i, s_{-i})$ is continuous in s_{-i} ;
- $u_i(s_i, s_{-i})$ is continuous and concave in s_i [in fact quasi-concavity suffices].

Then a pure strategy Nash equilibrium exists.

KAIST

Lanada •

Do you remember that we have already talked some existence and uniqueness conditions?

Recursive Diagonally Transferable Continuous (RDTC) Games

- This is necessary & sufficient condition
- [Tian 2009] Very recently developed
- Very nice to prove that there does not exist NE
- Sufficiency: much more complex than, for example, quasi-con cavity, may not be very, very useful, but we don't know

Kaist