Lecture 4: Continuous Normal-form game and Equilibrium efficiency and selection

Yi, Yung (이용) KAIST, Electrical Engineering http://lanada.kaist.ac.kr yiyung@kaist.edu

Key Words

- Normal-form (Strategic form) Game
- Matrix game
 - Strategy spaces are discrete
- Continuous-kernel game
 - Strategy spaces are continuous
- Strictly dominated strategies
- Pure/Mixed strategy
- Saddle point, Nash equilibrium

Continuous-kernel Game

- Action (strategy) sets have uncountably many elements
 - For example, strategies are:
 - Amount of transmission powers, access probabilities in Wi-Fi
- We will focus on pure strategies.

Example: Cournot Competition

- A famous example from microeconomics
 - Two firms producing a homogeneous good for the same market.
 - The action of a player *i* is a quantity, s_i ∈ [0, ∞] (amount of good he produces).
 - The utility for each player is its total revenue minus its total cost,

$$u_i(s_1, s_2) = s_i p(s_1 + s_2) - cs_i$$

where p(q) is the price of the good (as a function of the total amount q), and c is unit cost (same for both firms).

• Assume for simplicity that c = 1 and $p(q) = \max\{0, 2 - q\}$

Recall: Best Response

Definition 9 The best response function $b_i(s_{-i})$ of a player *i* to the profile of strategies s_{-i} is a set of strategies for that player such that

$$b_i(s_{-i}) = \{s_i \in S_i \mid u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i}), \forall s'_i \in S_i\}.$$
 (3.5)

Proposition 1 A strategy profile $s^* \in S$ is a Nash equilibrium of a noncooperative game if and only if every player's strategy is a best response to the other players' strategies, that is:

$$s_i^* \in b_i(s_{-i}^*)$$
 for every player *i*. (3.6)

Back to Cournot Competition

- Two firms producing a homogeneous good for the same market.
- The action of a player *i* is a quantity, s_i ∈ [0, ∞] (amount of good he produces).
- The utility for each player is its total revenue minus its total cost,

$$u_i(s_1, s_2) = s_i p(s_1 + s_2) - c s_i$$

where p(q) is the price of the good (as a function of the total amount q), and c is unit cost (same for both firms).

• Assume for simplicity that c = 1 and $p(q) = \max\{0, 2 - q\}$

Efficiency and Equilibrium Selection

Nash equilibrium: Efficiency

- Does the Nash equilibrium always exist?
- If so, are they "efficient"? Which is more "efficient"?
- Essentially, we need to compare two vectors

Pareto Optimality

- One measure of efficiency is Pareto optimality
 - A payoff vector **x** is Pareto optimal if there does **not** exist any payoff vector **y** such that

y ≥ x

with at least one strict inequality for an element y_i

MS

- Another type of solution concept: group rationality
 - Pareto optimal

The Prisoner's Dilemma

- One of the most studied and used games
 - proposed in 1950s

Price of Anarchy and Price of Stability

	S	С
S	5,5	1, 10
С	10, 1	2,2

- Price of Anarchy (PoA): (1+10)/(2+2)
 - Max aggregate payoff / min aggregate payoff at NE
- Price of Stability (PoS):
 - Max aggregate payoff/ max aggregate payoff at NE

What is PoA and PoS here?

- Two firms producing a homogeneous good for the same market.
- The action of a player *i* is a quantity, s_i ∈ [0, ∞] (amount of good he produces).
- The utility for each player is its total revenue minus its total cost,

$$u_i(s_1, s_2) = s_i p(s_1 + s_2) - c s_i$$

where p(q) is the price of the good (as a function of the total amount q), and c is unit cost (same for both firms).

• Assume for simplicity that c = 1 and $p(q) = \max\{0, 2 - q\}$

Summary

KAIS

Infinite Strategy Spaces

- Example: Cournot competition.
 - Two firms producing a homogeneous good for the same market.
 - The action of a player i is a quantity, s_i ∈ [0,∞] (amount of good he produces).
 - The utility for each player is its total revenue minus its total cost,

$$u_i(s_1, s_2) = s_i p(s_1 + s_2) - cs_i$$

where p(q) is the price of the good (as a function of the total amount q), and c is unit cost (same for both firms).

- Assume for simplicity that c = 1 and p(q) = max{0, 2 − q}
- Consider the best response correspondence for each of the firms, i.e., for each *i*, the mapping B_i(s_{-i}) : S_{-i} ⇒ S_i such that

$$B_i(s_{-i}) \in \arg \max_{s_i \in S_i} u_i(s_i, s_{-i}).$$

 Why is this a "correspondence" not a function? When will it be a function?

Cournot Competition (continued)

- The figure illustrates the best response correspondences (which in this case are functions).
- Assuming that players are rational and fully knowledgeable about the structure of the game and each other's rationality, what should the outcome of the game be?

Homework

- Congestion pricing game
- 나중에 NE의 existence에서 써먹을 것임.

KAIST

KA 15

Congestion-Pricing Game (2)

- Let l_i(x_i) denote the latency function of link i, which represents the delay or congestion costs as a function of the total flow x_i on link i.
- Assume that the links are owned by independent providers. Provider i sets a price p_i per unit of flow on link i.
- The effective cost of using link *i* is $p_i + I_i(x_i)$.
- Users have a reservation utility equal to R, i.e., if p_i + l_i(x_i) > R, then no traffic will be routed on link i.

Example 1

- We consider an example with two links and latency functions
 l₁(x₁) = 0 and l₂(x₂) = ^{3x₂}/₂. For simplicity, we assume that R = 1
 and d = 1.
- Given the prices (p₁, p₂), we assume that the flow is allocated according to Wardrop equilibrium, i.e., the flows are routed along minimum effective cost paths and the effective cost cannot exceed the reservation utility.

Definition

A flow vector $x = [x_i]_{i=1,...,l}$ is a Wardrop equilibrium if $\sum_{i=1}^{l} x_i \leq d$ and

$$p_i + l_i(x_i) = \min_j \{p_j + l_j(x_j)\},$$
 for all *i* with $x_i > 0$,

 $p_i + l_i(x_i) \le R$, for all i with $x_i > 0$,

with $\sum_{i=1}^{l} x_i = d$ if $\min_j \{ p_j + l_j(x_j) \} < R$.

 We use the preceding characterization to determine the flow allocation on each link given prices 0 ≤ p₁, p₂ ≤ 1:

$$x_2(p_1, p_2) = \begin{cases} \frac{2}{3}(p_1 - p_2), & p_1 \ge p_2, \\ 0, & \text{otherwise,} \end{cases}$$

and $x_1(p_1, p_2) = 1 - x_2(p_1, p_2)$.

The payoffs for the providers are given by:

$$u_1(p_1, p_2) = p_1 \times x_1(p_1, p_2) u_2(p_1, p_2) = p_2 \times x_2(p_1, p_2)$$

- We find the pure strategy Nash equilibria of this game by characterizing the best response correspondences, B_i(p_{-i}) for each player.
 - The following analysis assumes that at the Nash equilibria (p₁, p₂) of the game, the corresponding Wardrop equilibria x satisfies x₁ > 0, x₂ > 0, and x₁ + x₂ = 1. For the proofs of these statements, see [Acemoglu and Ozdaglar 07].

 In particular, for a given p₂, B₁(p₂) is the optimal solution set of the following optimization problem

 $\begin{array}{ll} \text{maximize } _{0 \leq p_1 \leq 1, \ 0 \leq x_1 \leq 1} & p_1 x_1 \\ \text{subject to} & p_1 = p_2 + \frac{3}{2}(1-x_1) \end{array}$

Solving the preceding optimization problem, we find that

$$B_1(p_2) = \min\left\{1, \frac{3}{4} + \frac{p_2}{2}\right\}.$$

Similarly, $B_2(p_1) = \frac{p_1}{2}$.

Lanada

KAI5'

 The figure illustrates the best response correspondences as a function of p₁ and p₂. The correspondences intersect at the unique point (p₁, p₂) = (1, ¹/₂), which is the unique pure strategy equilibrium.

Example 2

• We next consider a similar example with latency functions given by

$$l_1(x) = 0,$$
 $l_2(x) = \begin{cases} 0 & \text{if } 0 \le x \le 1/2 \\ \frac{x-1/2}{\epsilon} & x \ge 1/2, \end{cases}$

for some sufficiently small $\epsilon > 0$.

- The following list considers all candidate Nash equilibria (p₁, p₂) and profitable unilateral deviations for *e* sufficiently small, thus establishing the nonexistence of a pure strategy Nash equilibrium:
 - $p_1 = p_2 = 0$: A small increase in the price of provider 1 will generate positive profits, thus provider 1 has an incentive to deviate.
 - p₁ = p₂ > 0: Let x be the corresponding flow allocation. If x₁ = 1, then provider 2 has an incentive to decrease its price. If x₁ < 1, then provider 1 has an incentive to decrease its price.
 - 0 ≤ p₁ < p₂: Player 1 has an incentive to increase its price since its flow allocation remains the same.
 - 0 ≤ p₂ < p₁: For ε sufficiently small, the profit function of player 2, given p₁, is strictly increasing as a function of p₂, showing that provider 2 has an incentive to increase its price.