### 

# Lecture 3: Normal-form game (Strategic-form game) with mixed strategies

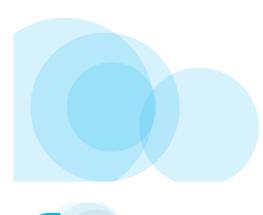
Yi, Yung (이용) KAIST, Electrical Engineering http://lanada.kaist.ac.kr yiyung@kaist.edu

#### 

### **Key Words**

- Normal-form (Strategic form) Game
- Matrix game
  - Strategy spaces are discrete
- Continuous-kernel game
  - Strategy spaces are continuous
- Strictly dominated strategies
- Pure/Mixed strategy
- Saddle point, Nash equilibrium

# Matrix Game: Mixed Strategy



## Pure vs. Mixed Strategies

- Previous lecture
  - Players make deterministic choices from their strategy spaces
- Strategies are **pure** if a player *i* selects, in a deterministic manner (probability 1), one strategy out of its strategy set S<sub>i</sub>
- Players can also select a probability distribution over their set of strategies, in which cases the strategies are called mixed



## **Mixed Strategies**

- Assume a zero-sum game, again.
- Payoffs are computed as expectations

|          |   | 1/3  | 2/3  |
|----------|---|------|------|
|          |   | С    | D    |
| Dlavor 1 | A | 4,-4 | 0,0  |
| Player 1 | В | -5,5 | 3,-3 |

Payoff to P1 when playing A = 1/3(4) + 2/3(0) = 4/3Payoff to P1 when playing B = 1/3(-5) + 2/3(3) = 1/3

How should players choose prob. distribution?

KAIST

#### 

# **Mixed Strategies**

| No pure strategy NE                                                                                |      |      | P2   |      |
|----------------------------------------------------------------------------------------------------|------|------|------|------|
| Claim 1                                                                                            | _    |      | Head | Tail |
| <ul> <li>There exists a stochastic equilibrium<br/>with both playing (1/2,1/2) strategy</li> </ul> | P1 _ | Head | 1,-1 | -1,1 |
|                                                                                                    |      | Tail | -1,1 | 1,-1 |

### • Why?

- Need to argue that if P2 chooses (1/2,1/2) strategy, P1 optimally chooses (1/2,1/2) strategy, and vice versa
- Suppose that P2(1/2,1/2) and P1(p,1-p)
  - Each outcome (H,H) and (H,T) occurs w.p. p/2.
  - Each outcome (H,T) and (T,H) occurs w.p. (1-p)2.
- P1 gains 1 w.p. p/2 + (1-p)/2 = ½, and loses 1 w.p. ½.
- P1's payoff does not depend on p!. Thus, every p (including 1/2) is optimal.
- Similarly, for P2.

#### 

# **Mixed Nash Equilibrium**

- Define  $\sigma_i$  as a probability mass function over  $S_i$ , the set of actions of player *i*
- When working with mixed strategies, each player i aim to maximize their expected payoff

$$u_i(\sigma) = \sum_{s \in S} \left( \prod_{j=1}^I \sigma_j(s_j) \right) u_i(s)$$

Mixed strategies Nash equilibrium

$$u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(\sigma_i, \sigma_{-i}^*)$$

for all  $\sigma_i \in \Sigma_i$ .

# **Mixed Nash Equilibrium**

- Define σ<sub>i</sub> as a probability mass function over S<sub>i</sub>, the set of actions of player i
- When working with mixed strategies, each player i aim to maximize their expected payoff

$$u_i(\sigma) = \sum_{s \in S} \left( \prod_{j=1}^I \sigma_j(s_j) \right) u_i(s)$$

## **Aside: Best Response Function**

#### Assume only pure strategy

**Definition 9** The best response function  $b_i(\mathbf{s}_{-i})$  of a player *i* to the profile of strategies  $\mathbf{s}_{-i}$  is a set of strategies for that player such that

$$b_i(\mathbf{s}_{-i}) = \{ \mathbf{s}_i \in \mathcal{S}_i \mid u_i(\mathbf{s}_i, \mathbf{s}_{-i}) \ge u_i(\mathbf{s}'_i, \mathbf{s}_{-i}), \forall \mathbf{s}'_i \in \mathcal{S}_i \}.$$
(3.5)

- Best response function is a set-valued function
- Probably, we can define NE based on Best Response?

KAIST

# Aside: BR and NE

**Proposition 1** A strategy profile  $s^* \in S$  is a Nash equilibrium of a noncooperative game if and only if every player's strategy is a best response to the other players' strategies, that is:

 $s_i^* \in b_i(s_{-i}^*)$  for every player *i*. (3.6)

BR and NE can be similarly defined for mixed strategies

#### 

KAIS1

### **Computing NE using the BR concept**

|                        |    |      | P2   |      |  |
|------------------------|----|------|------|------|--|
|                        |    |      | Head | Tail |  |
|                        | P1 | Head | 1,-1 | -1,1 |  |
| - P1(p,1-p), P2(q,1-q) | -  | Tail | -1,1 | 1,-1 |  |

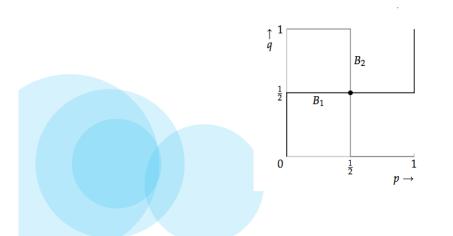
- Payoff to P1 when playing Head = q + (1-q)(-1) = 2q 1
- Payoff to P1 when playing Tail = q(-1) + (1-q)1 = 1-2q
- If q < ½, P1's payoff (Tail) > P1's payoff (Head)
   → P1's payoff (1,0) > P1's payoff (p, 1-p) for p > 0.
- Similarly, if q > ½, P1's payoff (0,1) > P1's payoff (p, 1-p) for p > 0.
- If  $q = \frac{1}{2}$ , P1's payoff (1,0) = P1's payoff (0,1) = P1's payff (p,1-p).
- Thus, P1's best response to P2(q,1-q) is:



$$B_1(q) = \begin{cases} \{0\} & \text{if } q < \frac{1}{2} \\ \{p: 0 \le p \le 1\} & \text{if } q = \frac{1}{2} \\ \{1\} & \text{if } q > \frac{1}{2} \end{cases}$$

- Similarly, P2's best response to P1(p,1-p) is:

The best response function of player 2 is similar:  $B_2(p) = \{1\}$  if  $p < \frac{1}{2}$ ,  $B_2(p) = \{q: 0 \le q \le 1\}$  if  $p = \frac{1}{2}$ , and  $B_2(p) = \{0\}$  if  $p > \frac{1}{2}$ . Both best response functions are illustrated in Figure 110.1.





KAIST

# **Exercise: Battle of Sexes**

• What is the mixed strategy NE?

