Lecture 2:
 LanaOa Normal-form game (Strategic-form game) with pure strategies
 Yi, Yung (이융)
 KAIST, Electrical Engineering http://lanada.kaist.ac.kr
 yiyung@kaist.edu

Key Words

- Normal-form (Strategic form) Game
- Matrix game
- Strategy spaces are discrete
- Continuous-kernel game
- Strategy spaces are continuous
- Strictly dominated strategies
- Pure/Mixed strategy
- Saddle point, Nash equilibrium

Matrix Game: Pure Strategy

Matrix Game

- Representation of a game
- Simultaneous play
- players analyze the game and write their strategy on a paper
- Combination of strategies determines payoff

More Formal Game Definition

- Normal form (strategic) game
- a finite set \boldsymbol{N} of players
- a set strategies A_{i} for each player i
- payoff function $u_{i}(s)$ for each player $i \in N$
- where $s \in A=\times_{j \in N} A_{j}$ is the set of strategies chosen by all players

$$
i \in N
$$

- A is the set of all possible outcomes
- $s \in A$ is a set of strategies chosen by players
- defines an outcome
- $u_{i}: A \rightarrow \mathfrak{R}$

Two-person Zero-sum Games

- One of the first games studied
- most well understood type of game
- Players interest are strictly opposed
- what one player gains what the other loses
- game matrix has single entry (gain to player 1)
- Intuitive solution concept
- players maximize gains
- unique solution

Solution Concept

- A formal rule for predicting how a game will be played
- Describes which strategies will be adopted by palyers, and thus the result of the game
- Many kinds of solution concepts
- People's perspectives are different
- It does not talk about how players reach a solution concept
- Thus, naturally, it is an "equilibrium concept".

Analyzing the Game: Domination

- Player 1 maximizes matrix entry, while player 2 minimizes
 (dominated by B)

Dominance

- Strategy S strictly dominates a strategy T
- if every possible outcome when S is chosen is better than the corresponding outcome when T is chosen
- Dominance Principle
- rational players never choose strictly dominated strategies
- Idea: Solve the game by eliminating strictly dominated strategies!
- iterated removal

Solving the Game

- Iterated removal of strictly dominated strategies

- Player 1 cannot remove any strategy (neither T or B dominates the other)
- Player 2 can remove strategy R (dominated by M)
- Player 1 can remove strategy T (dominated by B)
- Player 2 can remove strategy L (dominated by M)
- Solution: $P_{1} \rightarrow B, P_{2} \rightarrow M$
- payoff of 2

Solving the Game

- Removal of strictly dominates strategies does not always work
- Consider the game

	Player 2			
	A	B	D	
A	12	-1	0	
C	5	2	3	
D	-16	0	-1	

- Neither player has dominated strategies
- Requires another solution concept

Analyzing the Game

Player 2

Outcome (C, B) seems
"stable"

- saddle point of game

Saddle Points

- An outcome is a saddle point
- if it is both less than or equal to any value in its row and greater than or equal to any value in its column
- Saddle Point Principle
- Players should choose outcomes that are saddle points of the game
- Value of the game
- value of saddle point outcome if it exists

Why Play Saddle Points?

- If player 1 believes player 2 will play B
- player 1 should play best response to B (which is C)
- If player 2 believes player 1 will play C
- player 2 should play best response to C (which is B)

Why Play Saddle Points?

- Why should player 1 believe player 2 will play B ?
- playing B guarantees player 2 loses at most v (which is 2)
- Why should player 2 believe player 1 will play C?
- playing C guarantees player 1 wins at least v (which is 2)

Powerful arguments to play saddle point!

Solving the Game (min-max algorithm)

Player 2

	A	B	C	D	
Player 1	4	3	2	5	2
B	-10	2	0	-1	-10
C	7	5	1	3	1
D	0	8	-4	-5	-5
	7	8	2	5	

- choose maximum entry in each column
- choose the minimum among these
- this is the minimax value
- if minimax == maximin, then this is the saddle point of game

Multiple Saddle Points

- In general, game can have multiple saddle points

Games With no Saddle Points

Two-person Non-zero Sum Games

- Players are not strictly opposed
- payoff sum is non-zero

$$
\text { Player } 2
$$

		A	B
Player 1	A	3,4	2,0
	B	5,1	$-1,2$

- Situations where interest is not directly opposed

What is the Solution?

- Ideas of zero-sum game: saddle points
- pure strategy equilibrium
- no pure strategy eq.

Nash equilibrium

- A Nash equilibrium is a strategy profile s* with the property that no player i can do better by choosing a strategy different from s*, given that every other player $j \neq i$.
- In other words, for each player i with payoff function u_{i},

$$
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geq u_{i}\left(s_{i}, s_{-i}^{*}\right), \forall s_{i} \in \mathcal{S}_{i}
$$

- No user can change its payoff by unilaterally changing its strategy, i.e., changing its strategy while $\mathbf{s}_{-\mathrm{i}}$ is fixed

Multiple Solution Problem

- Games can have multiple equilibria
- not equivalent:
- payoff is different
- not interchangeable:
- playing an equilibrium strategy does not lead to equilibrium

Ex 1: Coordination game

- Two drivers, driving towards each other

	Left	Right
Left	1,1	0,0
Right	0,0	1,1

Ex 2: Matching Pennies game

- Each player shows her coin.
- Same side \rightarrow Player 1 pockets both, and Player 2 does otherwi se.

	Heads	Tails
Heads	$1,-1$	$-1,1$
Tails	$-1,1$	$1,-1$

Ex 3: Battle of the Sexes Game

- Tries to see a movie
- Husband: "Lethal Weapon", Wife: "Wondrous Love"

Husband

Summary

