Lanada.

Lecture 2: Normal-form game (Strategic-form game) with pure strategies

Yi, Yung (이용) KAIST, Electrical Engineering http://lanada.kaist.ac.kr yiyung@kaist.edu

Key Words

- Normal-form (Strategic form) Game
- Matrix game
 - Strategy spaces are discrete
- Continuous-kernel game
 - Strategy spaces are continuous
- Strictly dominated strategies
- Pure/Mixed strategy
- Saddle point, Nash equilibrium

Matrix Game: Pure Strategy

- Representation of a game
- Simultaneous play
 - players analyze the game and write their strategy on a paper
- Combination of strategies determines payoff

More Formal Game Definition

- Normal form (strategic) game
 - $-\,$ a finite set N of players
 - a set strategies A_i for each player i
 - payoff function $u_i^\iota(s)$ for each player $i\in N$
 - where $S \in A = \times_{j \in N} A_j$ is the set of strategies chosen by all players $i \in N$
- ullet A is the set of all possible outcomes
- $ullet s \in A$ is a set of strategies chosen by players
 - defines an outcome
- $u_i: A \to \Re$

Two-person Zero-sum Games

- One of the first games studied
 - most well understood type of game
- Players interest are strictly opposed
 - what one player gains what the other loses
 - game matrix has single entry (gain to player 1)
- Intuitive solution concept
 - players maximize gains
 - unique solution

Solution Concept

- A formal rule for predicting how a game will be played
- Describes which strategies will be adopted by palyers, and thus the result of the game
- Many kinds of solution concepts
 - People's perspectives are different
- It does not talk about how players reach a solution concept
- Thus, naturally, it is an "equilibrium concept".

Analyzing the Game: Domination

Player 1 maximizes matrix entry, while player 2 minimizes

Strictly dominated strategy (dominated by C)

Strictly
dominated
strategy
(dominated by B)

Dominance

- Strategy S strictly dominates a strategy T
 - if every possible outcome when S is chosen is better than the corresponding outcome when T is chosen
- Dominance Principle
 - rational players never choose strictly dominated strategies
- Idea: Solve the game by eliminating strictly dominated strategies!
 - iterated removal

• Iterated removal of strictly dominated strategies

- Player 1 cannot remove any strategy (neither T or B dominates the other)
- Player 2 can remove strategy R (dominated by M)
- Player 1 can remove strategy T (dominated by B)
- Player 2 can remove strategy L (dominated by M)
- Solution: P₁ -> B, P₂ -> M
 - payoff of 2

Solving the Game

- Removal of strictly dominates strategies does not always work
- Consider the game

Player 2

		A	В	D
	A	12	-1	0
Player 1	С	5	2	3
-	D	-16	0	-1

- Neither player has dominated strategies
- Requires another solution concept

Analyzing the Game

Player 2

		A	В	D
	A	12	-1	6
Player 1	С	5	2	3
_	D	-16/	0	-1
-				

Outcome (C, B) seems "stable"

saddle point of game

Saddle Points

- An outcome is a saddle point
 - if it is both less than or equal to any value in its row and greater than or equal to any value in its column
- Saddle Point Principle
 - Players should choose outcomes that are saddle points of the game
- Value of the game
 - value of saddle point outcome if it exists

Why Play Saddle Points?

	Player 2			
		Α	В	D
_	Α	12	-1	0
Player 1	С	5	2	3
- -	D	-16	0	-1

- If player 1 believes player 2 will play B
 - player 1 should play best response to B (which is C)
- If player 2 believes player 1 will play C
 - player 2 should play best response to C (which is B)

	Player 2			
		A	В	D
	Α	12	-1	0
Player 1	С	5	2	3
-	D	-16	0	-1

- Why should player 1 believe player 2 will play B?
 - playing B guarantees player 2 loses at most v (which is 2)
- Why should player 2 believe player 1 will play C?
 - playing C guarantees player 1 wins at least v (which is 2)

Powerful arguments to play saddle point!

	Player 2					
		Α	В	C	D	
	Α	4	3	2	5	2
Player 1	В	-10	2	0	-1	-10
, –	C	7	5	1	3	1
_	D	0	8	-4	-5	-5
		7	8	2	5	

- choose maximum entry in each column
- choose the minimum among these
- this is the minimax value

- choose minimum entry in each row
- choose the maximum among these
- this is maximin value

if minimax == maximin, then this is the saddle point of game

Multiple Saddle Points

In general, game can have multiple saddle points

		Player 2 B C D				
		Α	В ′	С	D	
	Α	3	2	2	5	2
DI 4	В	2	-10	0	-1	-10
Player 1 - -	С	5	2	2	3	2
	D	8	0	-4	-5	-5
		8	2	2	5	

Games With no Saddle Points

Two-person Non-zero Sum Games

- Players are not strictly opposed
 - payoff sum is non-zero

	Player 2		
		A	В
Player 1	Α	3,4	2,0
	В	5, 1	-1, 2

Situations where interest is not directly opposed

What is the Solution?

• Ideas of zero-sum game: saddle points

pure strategy equilibrium

• no pure strategy eq.

		Player 2			
_		A	В		
Player 1	· A	5,4	2,0		
	В	3,1	-1, 2		

Nash equilibrium

- A Nash equilibrium is a strategy profile s^* with the property that no player i can do better by choosing a strategy different from s^* , given that every other player $j \neq i$.
- In other words, for each player i with payoff function u_i ,

$$u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*), \forall s_i \in \mathcal{S}_i$$

 No user can change its payoff by unilaterally changing its strategy, i.e., changing its strategy while s_{-i} is fixed

Multiple Solution Problem

- Games can have multiple equilibria
 - not equivalent:
 - payoff is different
 - not interchangeable:
 - playing an equilibrium strategy does not lead to equilibrium

Ex 1: Coordination game

Two drivers, driving towards each other

	Left	Right
Left	1, 1	0,0
Right	0,0	1, 1

Ex 2: Matching Pennies game

- Each player shows her coin.
- Same side → Player 1 pockets both, and Player 2 does otherwise.

	Heads	Tails
Heads	1, -1	-1,1
Tails	-1,1	1, -1

Ex 3: Battle of the Sexes Game

- Tries to see a movie
- Husband: "Lethal Weapon", Wife: "Wondrous Love"

Husband

		LW	WL
Wife	LW	2,1	0,0
	WL	0,0	1,2

Summary

