Lanada-

# Lecture 2: Normal-form game (Strategic-form game) with pure strategies

Yi, Yung (이용) KAIST, Electrical Engineering http://lanada.kaist.ac.kr yiyung@kaist.edu

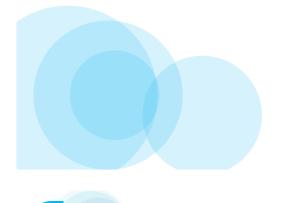


#### **Key Words**

- Normal-form (Strategic form) Game
- Matrix game
  - Strategy spaces are discrete
- Continuous-kernel game
  - Strategy spaces are continuous
- Strictly dominated strategies
- Pure/Mixed strategy
- Saddle point, Nash equilibrium

Lanada

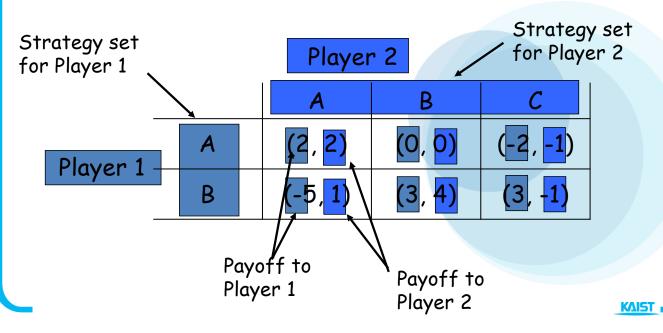
# Matrix Game: Pure Strategy



Lanada:

#### **Matrix Game**

- Representation of a game
- Simultaneous play
  - players analyze the game and write their strategy on a paper
- Combination of strategies determines payoff







#### **More Formal Game Definition**

- Normal form (strategic) game
  - $-\,$  a finite set N of players
  - a set strategies  $A_i$  for each player i
  - payoff function  $u_i^{\iota}(s)$  for each player  $i \in N$ 
    - where  $S \in A = \times_{j \in N} A_j$  is the set of strategies chosen by all players  $i \in N$
- A is the set of all possible outcomes
- $s \in A$  is a set of strategies chosen by players
  - defines an outcome
- $u_i:A\to\Re$

**KAIST** 

Lanada



#### **Two-person Zero-sum Games**

- One of the first games studied
  - most well understood type of game
- Players interest are strictly opposed
  - what one player gains what the other loses
  - game matrix has single entry (gain to player 1)
- Intuitive solution concept
  - players maximize gains
  - unique solution



#### **Solution Concept**

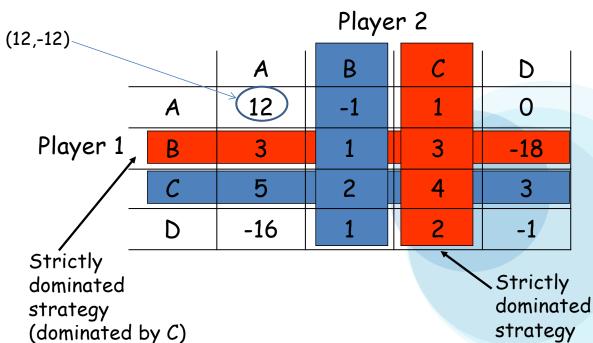
- A formal rule for predicting how a game will be played
- Describes which strategies will be adopted by palyers, and thus the result of the game
- Many kinds of solution concepts
  - People's perspectives are different
- It does not talk about how players reach a solution concept
- Thus, naturally, it is an "equilibrium concept".

**KAIST** 

Lanada •

#### **Analyzing the Game: Domination**

Player 1 maximizes matrix entry, while player 2 minimizes



strategy (dominated by B)

KAIST

#### **Dominance**

- Strategy S strictly dominates a strategy T
  - if every possible outcome when S is chosen is better than the corresponding outcome when T is chosen
- Dominance Principle
  - rational players never choose strictly dominated strategies
- Idea: Solve the game by eliminating strictly dominated strategies!
  - iterated removal

**KAIST** 

Lanada

#### **Solving the Game**

• Iterated removal of strictly dominated strategies

|            |   | Player 2 |   |   |   |
|------------|---|----------|---|---|---|
|            |   | L        |   | M | ₹ |
| Player 1 — |   |          | ) | 1 |   |
|            | ' |          | • | • |   |
| i layer 1  | В | 3        |   | 2 | 3 |

- Player 1 cannot remove any strategy (neither T or B dominates the other)
- Player 2 can remove strategy R (dominated by M)
- Player 1 can remove strategy T (dominated by B)
- Player 2 can remove strategy L (dominated by M)
- Solution: P<sub>1</sub> -> B, P<sub>2</sub> -> M
  - payoff of 2



- Removal of strictly dominates strategies does not always work
- Consider the game

Player 2

|          |   | Α   | В  | D  |
|----------|---|-----|----|----|
|          | Α | 12  | -1 | 0  |
| Player 1 | С | 5   | 2  | 3  |
| -        | D | -16 | 0  | -1 |

- Neither player has dominated strategies
- Requires another solution concept

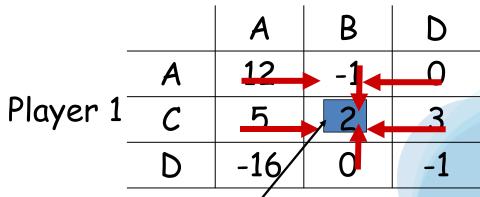
**KAIST** 

COPOCO



#### **Analyzing the Game**





Outcome (C, B) seems "stable"

saddle point of game



#### **Saddle Points**

- An outcome is a saddle point
  - if it is both less than or equal to any value in its row and greater than or equal to any value in its column
- Saddle Point Principle
  - Players should choose outcomes that are saddle points of the game
- Value of the game
  - value of saddle point outcome if it exists

**KAIST** 

Lanada



### Why Play Saddle Points?

|          | Player 2 |     |    |    |
|----------|----------|-----|----|----|
|          |          | Α   | В  | D  |
| ·        | Α        | 12  | -1 | 0  |
| Player 1 | С        | 5   | 2  | 3  |
| •        | D        | -16 | 0  | -1 |

- If player 1 believes player 2 will play B
  - player 1 should play best response to B (which is C)
- If player 2 believes player 1 will play C
  - player 2 should play best response to C (which is B)



|          |   | Player 2 |    |    |
|----------|---|----------|----|----|
|          |   | Α        | В  | D  |
| -        | Α | 12       | -1 | 0  |
| Player 1 | С | 5        | 2  | 3  |
| -        | D | -16      | 0  | -1 |

- Why should player 1 believe player 2 will play B?
  - playing B guarantees player 2 loses at most v (which is 2)
- Why should player 2 believe player 1 will play C?
  - playing C guarantees player 1 wins at least v (which is 2)

# Powerful arguments to play saddle point!

KAIS1

Lanada •

## Solving the Game (min-max algorithm)

|          | Player 2 |     |   |    |    |     |
|----------|----------|-----|---|----|----|-----|
|          |          | Α   | В | С  | D  |     |
| -        | Α        | 4   | 3 | 2  | 5  | 2   |
| Player 1 | В        | -10 | 2 | 0  | -1 | -10 |
| , –<br>– | С        | 7   | 5 | 1  | 3  | 1   |
|          | D        | 0   | 8 | -4 | -5 | -5  |
|          |          | 7   | 8 | 2  | 5  |     |

- choose maximum entry in each column
- choose the minimum among these
- this is the minimax value

- choose minimum entry in each row
- choose the maximum among these
- this is maximin value

if minimax == maximin, then this is the saddle point of game



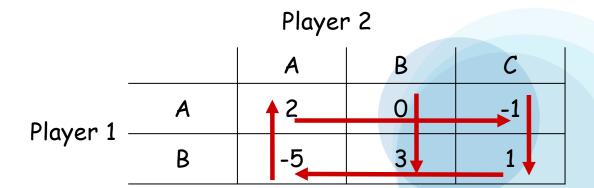
• In general, game can have multiple saddle points

|          |   | Player 2 |     |    |    |     |
|----------|---|----------|-----|----|----|-----|
|          |   | Α        | В   | С  | D  |     |
|          | Α | 3        | 2   | 2  | 5  | 2   |
| DI 4     | В | 2        | -10 | 0  | -1 | -10 |
| Player 1 | С | 5        | 2   | 2  | 3  | 2   |
|          | D | 8        | 0   | -4 | -5 | -5  |
|          |   | 8        | 2   | 2  | 5  |     |

KAIST

Lanada •

#### **Games With no Saddle Points**





#### **Two-person Non-zero Sum Games**

- Players are not strictly opposed
  - payoff sum is non-zero

|          | Player 2 |     |       |
|----------|----------|-----|-------|
|          |          | Α   | В     |
|          | Α        | 3,4 | 2,0   |
| Player 1 | В        | 5,1 | -1, 2 |

Situations where interest is not directly opposed

**KAIST** 

Lanada •



#### What is the Solution?

- Ideas of zero-sum game: saddle points
- pure strategy equilibrium

• no pure strategy eq.

|             |   | Player 2 |     |       |
|-------------|---|----------|-----|-------|
|             |   |          | Α   | В     |
| Player<br>1 | Α |          | 5,4 | 2,0   |
|             | В |          | 3,1 | -1, 2 |

|        | Player 2 |              |       |
|--------|----------|--------------|-------|
|        |          | Α            | В     |
| Player | Α        | <b>5</b> , 0 | -1, 4 |
| 1      | В        | 3,2          | 2,1   |





# Nash equilibrium

- A **Nash equilibrium** is a strategy profile  $s^*$  with the property that no player i can do better by choosing a strategy different from  $s^*$ , given that every other player  $j \neq i$ .
- In other words, for each player i with payoff function  $u_i$ ,

$$u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*), \forall s_i \in \mathcal{S}_i$$

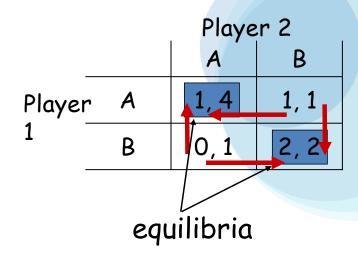
 No user can change its payoff by unilaterally changing its strategy, i.e., changing its strategy while s<sub>-i</sub> is fixed

**KAIST** 

Lanada:



- Games can have multiple equilibria
  - not equivalent:
    - payoff is different
  - not interchangeable:
    - playing an equilibrium strategy does not lead to equilibrium



KAIST



# Ex 1: Coordination game

Two drivers, driving towards each other

|       | Left | Right |
|-------|------|-------|
| Left  | 1,1  | 0,0   |
| Right | 0,0  | 1,1   |

**KAIST** 





### Ex 2: Matching Pennies game

- Each player shows her coin.
- Same side → Player 1 pockets both, and Player 2 does otherwise.

|       | Heads | Tails |
|-------|-------|-------|
| Heads | 1, -1 | -1,1  |
| Tails | -1,1  | 1, -1 |





#### Ex 3: Battle of the Sexes Game

- Tries to see a movie
- Husband: "Lethal Weapon", Wife: "Wondrous Love"

#### Husband

|      |    | LW  | WL  |
|------|----|-----|-----|
| Wife | LW | 2,1 | 0,0 |
| WIIC | WL | 0,0 | 1,2 |

**KAIST** 

Lanada •



### **Summary**

