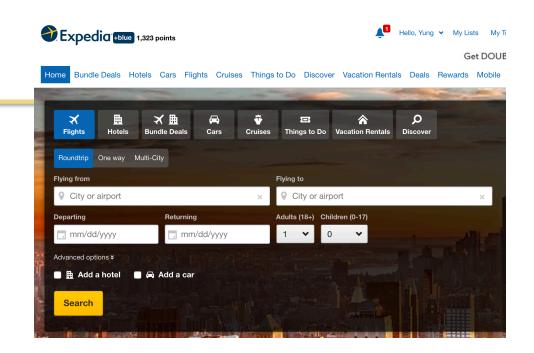


Flight Databases

- Key: (origin, destination, date, time)
- Value: (flight number, available seats, first or economy, duration, fare, etc



- User
 - Happy about "closest" departure time, not simply searching the flights with exact match with the given key
- We may need a slightly different data structure from Map ADT
- That's an ordered Map

Ordered Map ADT

Map ADT + the following methods

- firstEntry(k): Return an iterator to the entry with smallest key value; if the map is empty, it returns end.
- lastEntry(k): Return an iterator to the entry with largest key value; if the map is empty, it returns end.
- ceilingEntry(k): Return an iterator to the entry with the least key value greater than or equal to k; if there is no such entry, it returns end.
 - floorEntry(k): Return an iterator to the entry with the greatest key value less than or equal to k; if there is no such entry, it returns end.
 - lowerEntry(k): Return an iterator to the entry with the greatest key value less than k; if there is no such entry, it returns end.
- higherEntry(k): Return an iterator to the entry with the least key value greater than k; if there is no such entry, it returns end.
- SkipList is one of the efficient way of implementing ordered Maps

Implementing Ordered Map

- Natural choice
 - Sorted list based implementation
 - O(n) searching, insertion, deletion complexity
- Lesson from HashTable
 - Unordered map can be implemented by O(1) time (on average)
- Can we imagine similar things for ordered map?
 - SkipList

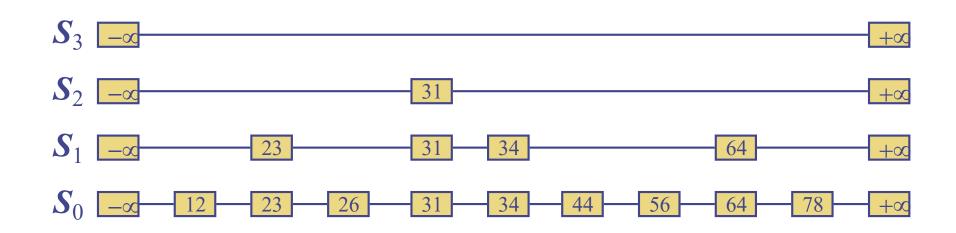
Operation	Time
size, empty	O(1)
firstEntry, lastEntry	<i>O</i> (1)
find, insert, erase	$O(\log n)$ (expected)
ceilingEntry, floorEntry, lowerEntry, higherEntry	$O(\log n)$ (expected)

What is a Skip List

- \bullet A skip list for a set S of distinct (key, element) items is a series of lists S_0, S_1, \ldots, S_h such that
 - Each list S_i contains the special keys $+\infty$ and $-\infty$
 - List S_0 contains the keys of S in nondecreasing order
 - Each list is a subsequence of the previous one, i.e.,

$$S_0 \supseteq S_1 \supseteq \ldots \supseteq S_h$$

- List S_h contains only the two special keys
- We show how to use a skip list to implement the ordered MAP ADT



Search

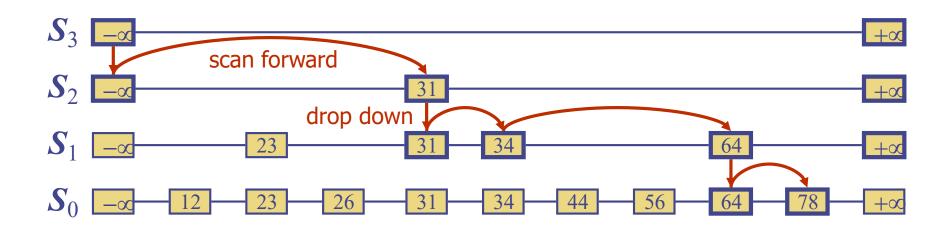
- lack We search for a key $oldsymbol{x}$ in a a skip list as follows:
 - We start at the first position of the top list
 - At the current position p, we compare x with $y \leftarrow key(next(p))$

```
x = y: we return element(next(p))

x > y: we "scan forward"

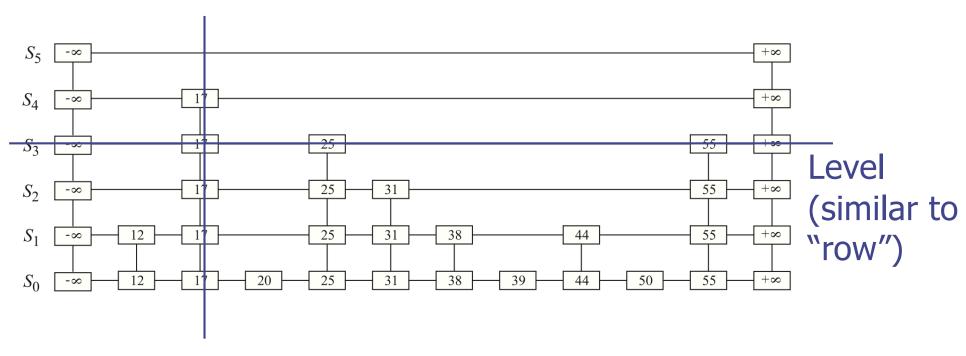
x < y: we "drop down"
```

- If we try to drop down past the bottom list, we return null
- Example: search for 78



Terminology

Height = 5



Tower (similar to "column")

(Note) Randomized Algorithms

- A randomized algorithm performs coin tosses (i.e., uses random bits) to control its execution
- It contains statements of the type

```
b \leftarrow random()

if b = 0

do A ...

else { b = 1}

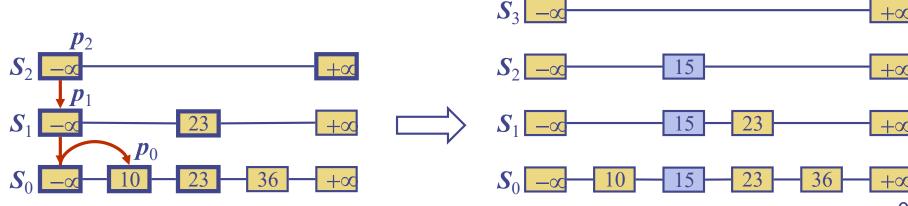
do B ...
```

Its running time depends on the outcomes of the coin tosses

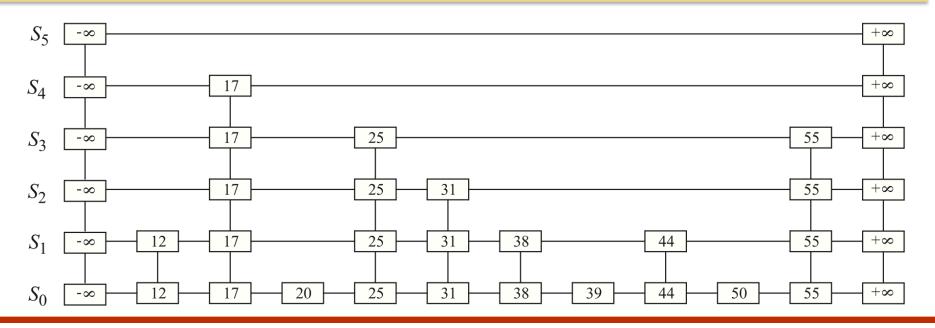
- We analyze the expected running time of a randomized algorithm under the following assumptions
 - the coins are unbiased, and
 - the coin tosses are independent
- The worst-case running time of a randomized algorithm is often large but has very low probability (e.g., it occurs when all the coin tosses give "heads")
- We use a randomized algorithm to insert items into a skip list

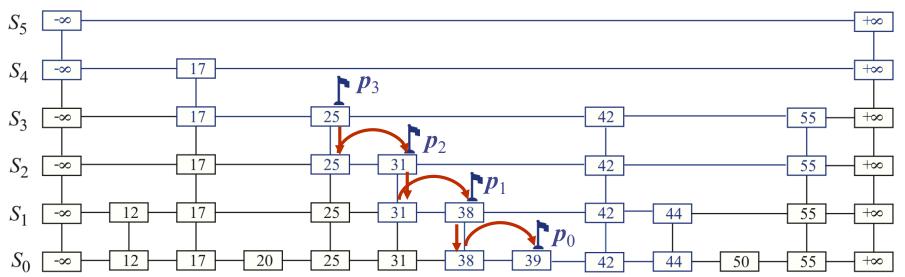
Insertion

- \bullet To insert an entry (x, o) into a skip list, we use a randomized algorithm:
 - We repeatedly toss a coin until we get tails, and we denote with i
 the number of times the coin came up heads
 - If $i \ge h$, we add (to the skip list) new lists S_{h+1}, \ldots, S_{i+1} , each containing only the two special keys, and do nothing, otherwise
 - We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with largest key less than x in each list $S_0, S_1, ..., S_i$
 - For $j \leftarrow 0, ..., i$, we insert item (x, o) into list S_j after position p_j
- Example: insert key 15, with i = 2



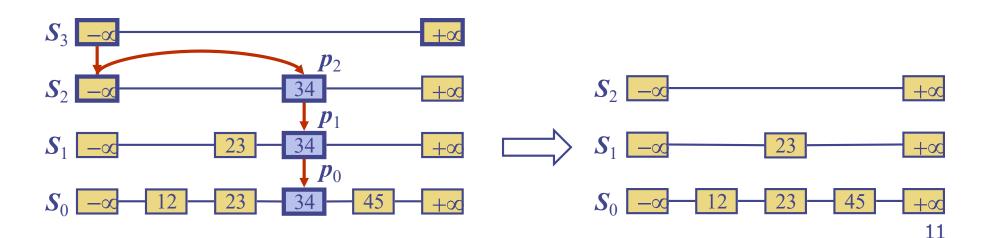
Example of Insertion of Key "42" with i = 3





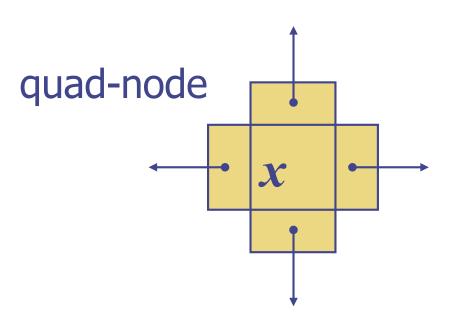
Deletion

- \bullet To remove an entry with key x from a skip list, we proceed:
 - We search for x in the skip list and find the positions p_0 , p_1 , ..., p_i of the items with key x, where position p_i is in list S_i
 - lacksquare We remove positions $m{p}_0,\ m{p}_1,\ ...,m{p}_i$ from the lists $m{S}_0,m{S}_1,\ ...,\ m{S}_i$
 - We remove all but one list containing only the two special keys
- Example: remove key 34



Implementation

- We can implement a skip list with quad-nodes
- A quad-node stores:
 - entry
 - link to the node prev
 - link to the node next
 - link to the node below
 - link to the node above
- Also, we define special keys PLUS_INF and MINUS_INF, and we modify the key comparator to handle them



Performance of skiplist

- Space
 - O(n)
 - Surprising? (Note that an element is stored in multiple places)

Time

Operation	Time
size, empty	<i>O</i> (1)
firstEntry, lastEntry	<i>O</i> (1)
find, insert, erase	$O(\log n)$ (expected)
ceilingEntry, floorEntry, lowerEntry, higherEntry	$O(\log n)$ (expected)

You will see why the probability course helps here. Be ready for math

Space Usage

- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm
- We use the following two basic probabilistic facts:
 - Fact 1: The probability of getting i consecutive heads when flipping a coin is $1/2^i$
 - Fact 2: If each of *n* entries is present in a set with probability *p*, the expected size of the set is *np* (expectation of a binomial distribution)

- \bullet Consider a skip list with n entries
 - By Fact 1, we insert an entry in list S_i with probability $1/2^i$
 - Why? Because we insert the entry for all levels <= i
 - By Fact 2, the expected size of list S_i is $n/2^i$
- The expected number of nodes used by the skip list is

$$\sum_{i=0}^{h} \frac{n}{2^{i}} = n \sum_{i=0}^{h} \frac{1}{2^{i}} < 2n$$

Thus, the expected space usage of a skip list with n items is O(n)

Height

- The running time of the search and insertion algorithms is affected by the height h of the skip list
- We show that with high probability, a skip list with n items has height O(log n)
- We use the following additional probabilistic fact:

Fact 3: If each of *n* events has probability *p*, the probability that at least one event occurs is at most *np* (*union bound*)

- \bullet Consider a skip list with n entires
 - By Fact 1, we insert an entry in list S_i with probability $1/2^i$
 - By Fact 3, the probability that list S_i has at least one item is at most $n/2^i$
- New Probability $i = 3\log n$, we have that the probability that $S_{3\log n}$ has at least one entry is at most

$$n/2^{3\log n} = n/n^3 = 1/n^2$$

- Thus a skip list with n entries has height at most $3\log n$ with probability at least $1 1/n^2$
- The height is O(log n) with "high probability"

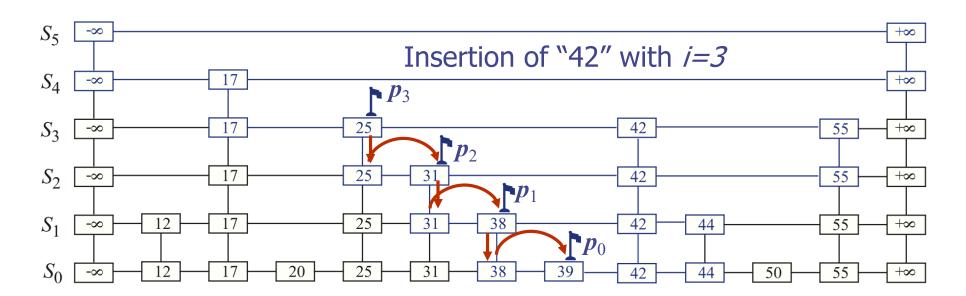
Search and Update Times (1)

- The search time in a skip list is proportional to
 - the number of drop-down steps, plus
 - the number of scan-forward steps
- The drop-down steps are bounded by the height of the skip list and thus are $O(\log n)$ with high probability
- To analyze the scan-forward steps, we use yet another probabilistic fact:

Fact 4: The expected number of coin tosses required in order to get tails is 2

Search and Update Times (2)

- After the key at the starting position, each additional key examined in a scan-forward at level i cannot also belong to level i+1
 - The probability that any further key is examined is ½
 - How many additional keys should be examined at each level i on average?
- lacktriangle By Fact 4, in each list the expected number of scan-forward steps is 2, i.e., O(1)
- \bullet Thus, the expected number of scan-forward steps is $O(\log n)$
- We conclude that a search in a skip list takes $O(\log n)$ expected time
- The analysis of insertion and deletion gives similar results



Summary

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm
- \bullet In a skip list with n entries
 - The expected space used isO(n)
 - The expected search, insertion and deletion time is
 O(log n)

- Using a more complex probabilistic analysis, one can show that these performance bounds also hold with high probability
- Skip lists are fast and simple to implement in practice

Questions?