
Skip Lists

+¥-¥

S0

S1

S2

S3

+¥-¥ 10 362315

+¥-¥ 15

+¥-¥ 2315

1

Flight Databases
Key: (origin, destination, date,
time)
Value: (flight number,
available seats, first or
economy, duration, fare, etc

2

User
n Happy about “closest” departure time, not simply searching the flights

with exact match with the given key

We may need a slightly different data structure from Map ADT

That’s an ordered Map

Ordered Map ADT
Map ADT + the following methods

SkipList is one of the efficient way of implementing ordered
Maps 3

Implementing Ordered Map
Natural choice
n Sorted list based implementation
n O(n) searching, insertion, deletion complexity

Lesson from HashTable
n Unordered map can be implemented by O(1) time (on average)

Can we imagine similar things for ordered map?
n SkipList

4

What is a Skip List
A skip list for a set S of distinct (key, element) items is a series of lists S0, S1 ,
… , Sh such that
n Each list Si contains the special keys +¥ and -¥
n List S0 contains the keys of S in nondecreasing order
n Each list is a subsequence of the previous one, i.e.,

S0 Ê S1 Ê … Ê Sh
n List Sh contains only the two special keys

We show how to use a skip list to implement the ordered MAP ADT

5

56 64 78 +¥31 34 44-¥ 12 23 26

+¥-¥

+¥31-¥

64 +¥31 34-¥ 23

S0

S1

S2

S3

Search
We search for a key x in a a skip list as follows:
n We start at the first position of the top list
n At the current position p, we compare x with y ¬ key(next(p))

x = y: we return element(next(p))
x > y: we “scan forward”
x < y: we “drop down”

n If we try to drop down past the bottom list, we return null

Example: search for 78

6

+¥-¥

S0

S1

S2

S3

+¥31-¥

64 +¥31 34-¥ 23

56 64 78 +¥31 34 44-¥ 12 23 26

scan forward

drop down

Terminology

7

Height = 5

Level
(similar to
“row”)

Tower (similar to “column”)

(Note) Randomized Algorithms
A randomized algorithm performs
coin tosses (i.e., uses random
bits) to control its execution

It contains statements of the type
b ¬ random()
if b = 0

do A …
else { b = 1}

do B …

Its running time depends on the
outcomes of the coin tosses

We analyze the expected running
time of a randomized algorithm
under the following assumptions
n the coins are unbiased, and
n the coin tosses are independent

The worst-case running time of a
randomized algorithm is often large
but has very low probability (e.g., it
occurs when all the coin tosses give
“heads”)

We use a randomized algorithm to
insert items into a skip list

8

Insertion
To insert an entry (x, o) into a skip list, we use a randomized algorithm:
n We repeatedly toss a coin until we get tails, and we denote with i

the number of times the coin came up heads
n If i ³ h, we add (to the skip list) new lists Sh+1, … , Si +1, each

containing only the two special keys, and do nothing, otherwise
n We search for x in the skip list and find the positions p0, p1 , …, pi of

the items with largest key less than x in each list S0, S1, … , Si
n For j ¬ 0, …, i, we insert item (x, o) into list Sj after position pj

Example: insert key 15, with i = 2

9
+¥-¥ 10 36

+¥-¥

23

23 +¥-¥

S0

S1

S2

+¥-¥

S0

S1

S2

S3

+¥-¥ 10 362315

+¥-¥ 15

+¥-¥ 2315
p0

p1

p2

Example of Insertion of Key “42” with i = 3

10

p3

p2

p1

p0

Deletion
To remove an entry with key x from a skip list, we proceed:
n We search for x in the skip list and find the positions p0, p1 ,

…, pi of the items with key x, where position pj is in list Sj

n We remove positions p0, p1 , …, pi from the lists S0, S1, … , Si

n We remove all but one list containing only the two special
keys

Example: remove key 34

11
-¥ +¥4512

-¥ +¥

23

23-¥ +¥

S0

S1

S2

-¥ +¥

S0

S1

S2

S3

-¥ +¥4512 23 34

-¥ +¥34

-¥ +¥23 34
p0

p1

p2

Implementation
We can implement a skip list with
quad-nodes

A quad-node stores:
n entry
n link to the node prev
n link to the node next
n link to the node below
n link to the node above

Also, we define special keys
PLUS_INF and MINUS_INF, and
we modify the key comparator to
handle them

12

x

quad-node

Performance of skiplist
Space
n O(n)
n Surprising? (Note that an element is stored in multiple places)

Time

You will see why the probability course helps here. Be ready
for math

13

Space Usage
The space used by a skip list
depends on the random bits used
by each invocation of the
insertion algorithm

We use the following two basic
probabilistic facts:

Fact 1: The probability of getting i
consecutive heads when flipping
a coin is 1/2i

Fact 2: If each of n entries is present
in a set with probability p, the
expected size of the set is np
(expectation of a binomial
distribution)

Consider a skip list with n entries
n By Fact 1, we insert an entry in list

Si with probability 1/2i
w Why? Because we insert the entry for all

levels <= i

n By Fact 2, the expected size of list
Si is n/2i

The expected number of nodes
used by the skip list is

14

nnn h

i
i

h

i
i 2

2
1

2 00
<= åå

==

Thus, the expected space usage
of a skip list with n items is O(n)

Height
The running time of the search
and insertion algorithms is
affected by the height h of the
skip list

We show that with high
probability, a skip list with n
items has height O(log n)

We use the following additional
probabilistic fact:

Fact 3: If each of n events has
probability p, the probability that
at least one event occurs is at
most np (union bound)

Consider a skip list with n entires
n By Fact 1, we insert an entry in list

Si with probability 1/2i

n By Fact 3, the probability that list Si
has at least one item is at most n/2i

By picking i = 3log n, we have that
the probability that S3log n has at
least one entry is
at most

n/23log n = n/n3 = 1/n2

Thus a skip list with n entries has
height at most 3log n with
probability at least 1 - 1/n2

The height is O(log n) with “high
probability”

15

Search and Update Times (1)
The search time in a skip list is
proportional to
n the number of drop-down steps,

plus
n the number of scan-forward

steps

The drop-down steps are
bounded by the height of the skip
list and thus are O(log n) with
high probability

To analyze the scan-forward
steps, we use yet another
probabilistic fact:

Fact 4: The expected number of
coin tosses required in order to
get tails is 2

16

Search and Update Times (2)
After the key at the starting position, each additional key examined in a scan-forward
at level i cannot also belong to level i+1
n The probability that any further key is examined is ½
n How many additional keys should be examined at each level i on average?

By Fact 4, in each list the expected number of scan-forward steps is 2, i.e., O(1)

Thus, the expected number of scan-forward steps is O(log n)
We conclude that a search in a skip list takes O(log n) expected time
The analysis of insertion and deletion gives similar results

17

Insertion of “42” with i=3
p3

p2

p1

p0

Summary
A skip list is a data structure
for dictionaries that uses a
randomized insertion
algorithm

In a skip list with n entries
n The expected space used is
O(n)

n The expected search,
insertion and deletion time is
O(log n)

Using a more complex
probabilistic analysis, one can
show that these performance
bounds also hold with high
probability

Skip lists are fast and simple
to implement in practice

18

Questions?

