Skip Lists

Ordered Map ADT

- Map ADT + the following methods
firstEntry (k) : Return an iterator to the entry with smallest key value; if the map is empty, it returns end.
lastEntry (k) : Return an iterator to the entry with largest key value; if the map is empty, it returns end
ceilingEntry (k) : Return an iterator to the entry with the least key value greater than or equal to k; if there is no such entry, it returns end.
floorEntry (k) : Return an iterator to the entry with the greatest key value less than or equal to k; if there is no such entry, it returns end.
lowerEntry (k) : Return an iterator to the entry with the greatest key value less than k; if there is no such entry, it returns end.
higherEntry (k) : Return an iterator to the entry with the least key value greater than k; if there is no such entry, it returns end.
- SkipList is one of the efficient way of implementing ordered Maps
- Key: (origin, destination, date, time)
- Value: (flight number, available seats, first or economy, duration, fare, etc
\diamond User
- Happy about "closest" departure time, not simply searching the flights with exact match with the given key
\star We may need a slightly different data structure from Map ADT
* That's an ordered Map

Implementing Ordered Map

- Natural choice
- Sorted list based implementation
- $O(n)$ searching, insertion, deletion complexity
- Lesson from HashTable
- Unordered map can be implemented by O(1) time (on average)
- Can we imagine similar things for ordered map?
- SkipList

Operation	Time
size, empty	$O(1)$
firstEntry, lastEntry	$O(1)$
find, insert, erase	$O(\log n)$ (expected)
ceilingEntry, floorEntry, lowerEntry, higherEntry	$O(\log n)$ (expected)

What is a Skip List

\diamond A skip list for a set S of distinct (key, element) items is a series of lists $\boldsymbol{S}_{0}, \boldsymbol{S}_{1}$, ..., \boldsymbol{S}_{h} such that

- Each list S_{i} contains the special keys $+\infty$ and $-\infty$
- List \boldsymbol{S}_{0} contains the keys of \boldsymbol{S} in nondecreasing order
- Each list is a subsequence of the previous one, i.e.,

$$
\boldsymbol{S}_{0} \supseteq \boldsymbol{S}_{1} \supseteq \ldots \supseteq \boldsymbol{S}_{\boldsymbol{h}}
$$

- List S_{h} contains only the two special keys
\diamond We show how to use a skip list to implement the ordered MAP ADT

5

Terminology

$$
\text { Height }=5
$$

Tower (similar to "column")

Search

\diamond We search for a key \boldsymbol{x} in a a skip list as follows:

- We start at the first position of the top list
- At the current position p, we compare x with $y \leftarrow \boldsymbol{k e y}(\boldsymbol{n e x t}(p))$
$\boldsymbol{x}=\boldsymbol{y}$: we return element($\boldsymbol{n e x t}(\boldsymbol{p}))$
$\boldsymbol{x}>\boldsymbol{y}$: we "scan forward"
$\boldsymbol{x}<\boldsymbol{y}$: we "drop down"
- If we try to drop down past the bottom list, we return null
\& Example: search for 78

(Note) Randomized Algorithms

- A randomized algorithm performs coin tosses (i.e., uses random bits) to control its execution
- It contains statements of the type $b \leftarrow$ random ()

if $b=0$
 do A...

else $\{\boldsymbol{b}=1\}$
do B.

* Its running time depends on the outcomes of the coin tosses
- We analyze the expected running time of a randomized algorithm under the following assumptions
- the coins are unbiased, and
- the coin tosses are independent
- The worst-case running time of a randomized algorithm is often large but has very low probability (e.g., it occurs when all the coin tosses give "heads")
- We use a randomized algorithm to insert items into a skip list

Insertion

* To insert an entry ($\boldsymbol{x}, \boldsymbol{o}$) into a skip list, we use a randomized algorithm:
- We repeatedly toss a coin until we get tails, and we denote with \boldsymbol{i} the number of times the coin came up heads
- If $\boldsymbol{i} \geq \boldsymbol{h}$, we add (to the skip list) new lists $\boldsymbol{S}_{\boldsymbol{h}+1}, \ldots, \boldsymbol{S}_{\boldsymbol{i}+1}$, each containing only the two special keys, and do nothing, otherwise
- We search for \boldsymbol{x} in the skip list and find the positions $\boldsymbol{p}_{0}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{\boldsymbol{i}}$ of the items with largest key less than \boldsymbol{x} in each list $\boldsymbol{S}_{0}, \boldsymbol{S}_{1}, \ldots, \boldsymbol{S}_{\boldsymbol{i}}$
- For $\boldsymbol{j} \leftarrow 0, \ldots, \boldsymbol{i}$, we insert item $(\boldsymbol{x}, \boldsymbol{o})$ into list $\boldsymbol{S}_{\boldsymbol{j}}$ after position $\boldsymbol{p}_{\boldsymbol{j}}$
- Example: insert key 15 , with $\boldsymbol{i}=2$

Deletion

\star To remove an entry with key \boldsymbol{x} from a skip list, we proceed:

- We search for \boldsymbol{x} in the skip list and find the positions $\boldsymbol{p}_{0}, \boldsymbol{p}_{1}$, $\ldots, \boldsymbol{p}_{\boldsymbol{i}}$ of the items with key \boldsymbol{x}, where position $\boldsymbol{p}_{\boldsymbol{j}}$ is in list $\boldsymbol{S}_{\boldsymbol{j}}$
- We remove positions $\boldsymbol{p}_{0}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{\boldsymbol{i}}$ from the lists $\boldsymbol{S}_{0}, \boldsymbol{S}_{1}, \ldots, \boldsymbol{S}_{\boldsymbol{i}}$
- We remove all but one list containing only the two special keys
- Example: remove key 34

Implementation

- We can implement a skip list with quad-nodes
- A quad-node stores:
- entry
- link to the node prev
- link to the node next
- link to the node below
- link to the node above
- Also, we define special keys
 PLUS_INF and MINUS_INF, and we modify the key comparator to handle them

Performance of skiplist

- Space
- O(n)
- Surprising? (Note that an element is stored in multiple places)
- Time

Operation	Time
size, empty	$O(1)$
firstEntry, lastEntry	$O(1)$
find, insert, erase	$O(\log n)$ (expected)
ceilingEntry, floorEntry, lowerEntry, higherEntry	$O(\log n)$ (expected)

* You will see why the probability course helps here. Be ready for math
- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm
- We use the following two basic probabilistic facts:

Fact 1: The probability of getting i consecutive heads when flipping a coin is $1 / 2^{i}$

Fact 2: If each of \boldsymbol{n} entries is present in a set with probability p, the expected size of the set is $n p$ expectation of a binomial distribution)

- Consider a skip list with \boldsymbol{n} entries
- By Fact 1, we insert an entry in list S_{i} with probability $1 / 2^{i}$
- Why? Because we insert the entry for all levels <= i
- By Fact 2, the expected size of list S_{i} is $n / 2^{i}$
* The expected number of nodes used by the skip list is

$$
\sum_{i=0}^{h} \frac{n}{2^{i}}=n \sum_{i=0}^{h} \frac{1}{2^{i}}<2 n
$$

Thus, the expected space usage of a skip list with \boldsymbol{n} items is $\boldsymbol{O}(\boldsymbol{n})$

Height

- The running time of the search and insertion algorithms is affected by the height \boldsymbol{h} of the skip list
- We show that with high probability, a skip list with n items has height $\boldsymbol{O}(\log \boldsymbol{n})$
- We use the following additional probabilistic fact:
Fact 3: If each of \boldsymbol{n} events has probability \boldsymbol{p}, the probability that at least one event occurs is at most $n p$ (union bound)
- Consider a skip list with \boldsymbol{n} entires
- By Fact 1, we insert an entry in list S_{i} with probability $1 / 2^{i}$
- By Fact 3, the probability that list S_{i} has at least one item is at most $\boldsymbol{n} / 2^{i}$
- By picking $i=3 \log n$, we have that the probability that $\boldsymbol{S}_{3 \log n}$ has at least one entry is
at most

$$
\boldsymbol{n} / 2^{3 \log n}=\boldsymbol{n} / \boldsymbol{n}^{3}=1 / \boldsymbol{n}^{2}
$$

- Thus a skip list with \boldsymbol{n} entries has height at most $3 \log \boldsymbol{n}$ with probability at least $1-1 / \boldsymbol{n}^{2}$
- The height is $O(\log n)$ with "high probability"

Search and Update Times (1)

- The search time in a skip list is proportional to
- the number of drop-down steps, plus
- the number of scan-forward steps
- The drop-down steps are bounded by the height of the skip list and thus are $\boldsymbol{O}(\log \boldsymbol{n})$ with high probability
- To analyze the scan-forward steps, we use yet another probabilistic fact:
Fact 4: The expected number of coin tosses required in order to get tails is 2

Search and Update Times (2)

- After the key at the starting position, each additional key examined in a scan-forward at level i cannot also belong to level $i+1$
- The probability that any further key is examined is $1 / 2$
- How many additional keys should be examined at each level i on average?
- By Fact 4, in each list the expected number of scan-forward steps is 2, i.e., $\boldsymbol{O}(1)$
- Thus, the expected number of scan-forward steps is $\boldsymbol{O}(\log \boldsymbol{n})$
- We conclude that a search in a skip list takes $\boldsymbol{O}(\log \boldsymbol{n})$ expected time
- The analysis of insertion and deletion gives similar results

Summary

* A skip list is a data structure for dictionaries that uses a randomized insertion algorithm
- In a skip list with n entries
- The expected space used is $\boldsymbol{O}(\mathrm{n})$
- The expected search, insertion and deletion time is $\boldsymbol{O}(\log \boldsymbol{n})$
- Using a more complex probabilistic analysis, one can show that these performance bounds also hold with high probability
- Skip lists are fast and simple to implement in practice

Questions?

