1V

Skip Lists

;[[-+od
S,[= [15] [-+od
S Eod— 523 — 5

Sol=od—{ 10 {1523 36 |—{ +od

s . a .

v Expedla BT 1,323 points AY Helo,Yung v Mylists MyT
° Get DOUE
I g a a a S e S Bundle Deals Hotels Cars Flights Cruises Things to Do Discover Vacation Rentals Deals Rewards Mobile

@ Key: (origin, destination, date,
time)

@ Value: (flight number, o
available seats, first or

economy, duration, fare, etc i

@ User

m Happy about “closest” departure time, not simply searching the flights
with exact match with the given key

@ We may need a slightly different data structure from Map ADT

@ That’s an ordered Map

Ordered Map ADT
@ Map ADT + the following methods

firstEntry(k): Return an iterator to the entry with smallest key value; if
the map is empty, it returns end.

lastEntry(k): Return an iterator to the entry with largest key value; if
the map is empty, it returns end.

ceilingEntry(k): Return an iterator to the entry with the least key value
greater than or equal to k; if there is no such entry, it
returns end.

floorEntry(k): Return an iterator to the entry with the greatest key value
less than or equal to k; if there is no such entry, it returns
end.

lowerEntry(k): Return an iterator to the entry with the greatest key value
less than k; if there is no such entry, it returns end.

higherEntry(k): Return an iterator to the entry with the least key value
greater than k; if there is no such entry, it returns end.

@ SkipList is one of the efficient way of implementing ordered
Maps 3

Implementing Ordered Map

@ Natural choice
m Sorted list based implementation
m O(n) searching, insertion, deletion complexity

@ Lesson from HashTable

m Unordered map can be implemented by O(1) time (on average)

@ Can we imagine similar things for ordered map?
m SkipList

Operation | Time
size, empty | O(1)
firstEntry, lastEntry | O(1)
find, insert, erase | O(logn) (expected)
ceilingEntry, floorEntry, lowerEntry, higherEntry | O(logn) (expected)

What is a Skip List

@ A skip list for a set S of distinct (key, element) items is a series of lists S, S,
... .8, such that

m Each list §; contains the special keys +o0 and —oo
m List.§, contains the keys of § in nondecreasing order
m Each list is a subsequence of the previous one, i.e.,

S()QSIQ QSh

= List.§), contains only the two special keys

@ We show how to use a skip list to implement the ordered MAP ADT

S5 =4 [+od
S, =4 (311 [+od
S [23] 3134 [64] [o

S, {3 1+ee {334 {aa {56 o478+

Search

@ We search for a key x in a a skip list as follows:
m We start at the first position of the top list

m At the current position p, we compare x with y <— key(next(p))

X =y: we return element(next(p))
x > y: we “scan forward”
x <y:we “drop down”

n If we try to drop down past the bottom list, we return null

@ Example: search for 78

S;

S,

ad
,m
S, 4]

[

—

drop down |,

ol

A |
= 23 | 1 34 [64]

Sy =4 12|—|23|—|26|—|31|—|34|—|44|—|56

Terminology

Height = 5

-
[|
P | o1
l_l J
|
[25 31
25 —{ 31 — 38}

[

({20 {25 {31t {38 39 - 44 —{ 50 {55]

Tower (similar to “column”)

(Note) Randomized Algorithms

@ Arandomized algorithm performs
coin tosses (i.e., uses random
bits) to control its execution

@ It contains statements of the type
b < random()
if b=0
do A ...
else { h=1}
do B ...

@ Its running time depends on the
outcomes of the coin tosses

@ We analyze the expected running
time of a randomized algorithm
under the following assumptions

= the coins are unbiased, and

m the coin tosses are independent

@ The worst-case running time of a
randomized algorithm is often large
but has very low probability (e.g., it
occurs when all the coin tosses give
“heads”)

@ We use a randomized algorithm to
insert items into a skip list

Insertion

@ Toinsert an entry (x, o) into a skip list, we use a randomized algorithm:

m We repeatedly toss a coin until we get tails, and we denote with i
the number of times the coin came up heads

m Ifi>h, we add (to the skip list) new lists S}, ... ,S;.;, each
containing only the two special keys, and do nothing, otherwise

m We search for x in the skip list and find the positions p,, p;, ..., p;of
the items with largest key less than x in each list S, S, ..., S;

m Forj<« 0, ...,i, weinsertitem (x, o) into list S; after position p;

@ Example: insert key 15, with i =2

5, =

szq’; = 5,2 5] =
P1

s 4 el —> 5[=

| Po
S, L= | +o Sol=od—{ 10— 152336+

©]

Example of Insertion of Key “42” withi=3

25 31

| |
So [{17 2025 {31 {38 39— 42 {44 {50 {55 = |
10

Deletion

@ To remove an entry with key x from a skip list, we proceed:

m We search for x in the skip list and find the positions p,, p;,
..., piof the items with key x, where position p;is in list §;

m We remove positions py, p;, ..., p; from the lists 8, S, ... , S;

m We remove all but one list containing only the two special
keys

@ Example: remove key 34

S3 = E
T——r - -

S2 = 34r| aF S2 = ar
J4!

| Lo [23] S L= — 23 |

S 3 3EO—IE I:> [=d [23] — +od

So L=od—{ 12 {23 {34 | +og Sy [=od—12 23 [45 [+od
11

Implementation

@ We can implement a skip list with
guad-nodes

@ A quad-node stores:
= entry

m link to the node prev quad'nOde

= link to the node next

—

= link to the node below — |X —1—

s link to the node above

@ Also, we define special keys
PLUS_INF and MINUS_INF, and
we modify the key comparator to
handle them

12

Performance of skiplist

@ Space
= O(n)

m Surprising? (Note that an element is stored in multiple places)

@ Time

Operation | Time
size, empty | O(1)
firstEntry, lastEntry | O(1)
find, insert, erase | O(logn) (expected)
ceilingEntry, floorEntry, lowerEntry, higherEntry | O(logn) (expected)

@ You will see why the probability course helps here. Be ready

for math
13

Space Usage

@ The space used by a skip list @ Consider a skip list with n entries
depends on the random bits used = By Fact 1, we insert an entry in list
by each invocation of the S; with probability 1/2¢
insertion algorithm + Why? Because we insert the entry for all

levels <=i

@ We use the following two basic

babilistic fact m By Fact 2, the expected size of list
probabilistic facts:

Si is n/2i

Fact 1: The probability of getting i

consecutive heads when flipping @ The expected number of nodes

a coin is 1/2i used by the skip list is
h h
Fact 2: If each of n entries is present n _ i
in a set with probability p, the Z i h ”Z 9i <2n
i=0 i=0

expected size of the setis np
(expectation of a binomial
distribution) @ Thus, the expected space usage

of a skip list with n items is O(n)

14

Height

@ The running time of the search
and insertion algorithms is
affected by the height & of the
skip list

@ We show that with high
probability, a skip list with n
items has height O(log n)

@ We use the following additional
probabilistic fact:

Fact 3: If each of n events has
probability p, the probability that
at least one event occurs is at
most np (union bound)

Consider a skip list with n entires

m By Fact 1, we insert an entry in list
S; with probability 1/2¢

= By Fact 3, the probability that list S;
has at least one item is at most n/2!
By picking i = 3log n, we have that
the probability that 83, , has at
least one entry is
at most
n/23¢n = p/p3 = 1/n?

Thus a skip list with n entries has
height at most 3log n with
probability at least 1 — 1/n?

The height is O(log n) with “high
probability”

15

Search and Update Times (1)

@ The search time in a skip list is
proportional to
m the number of drop-down steps,
plus

s the number of scan-forward
steps

@ The drop-down steps are
bounded by the height of the skip
list and thus are O(log n) with
high probability

@ To analyze the scan-forward
steps, we use yet another
probabilistic fact:

Fact 4: The expected number of

coin tosses required in order to
get tails is 2

16

Search and Update Times (2)

@ After the key at the starting position, each additional key examined in a scan-forward
at level i cannot also belong to level j+1

m The probability that any further key is examined is %
m How many additional keys should be examined at each level i on average?

By Fact 4, in each list the expected number of scan-forward steps is 2, i.e., O(1)

Thus, the expected number of scan-forward steps is O(log n)
We conclude that a search in a skip list takes O(log n) expected time
The analysis of insertion and deletion gives similar results

Lee @

Insertion of “42"” with /=3

r
So [12 {17 {20 {25 {31 {3839 {42 44 {50 - 55 - += |

Summary

@ A skip list is a data structure 9 Using a more complex
for dictionaries that uses a probabilistic analysis, one can
randomized insertion show that these performance
algorithm bounds also hold with high

probability
@ In a skip list with n entries
m The expected space used is @ Skip lists are fast and simple
O(n) to implement in practice

m The expected search,
insertion and deletion time is
O(log n)

17

18

Questions?

