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Maps

§ A map models a searchable collection of key-value 
entries

§ The main operations of a map are for searching, 
inserting, and deleting items

§ Multiple entries with the same key are not allowed

§ Applications:
§ address book (yellowpage)
§ student-record database
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Entry ADT
An entry stores a key-value pair (k,v)
Methods:
n key(): return the associated key
n value(): return the associated value
n setKey(k): set the key to k
n setValue(v): set the value to v

We call this “item” or “element” or “record” exchangeably.

Then, MAP stores multiple a collection of Entries 
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The Map ADT
find(k): if the map M has an entry with key k, return and iterator 
to it; else, return special iterator end
put(k, v): if there is no entry with key k, insert entry 
(k, v), and otherwise set its value to v. Return an iterator to the 
new/modified entry
erase(k): if the map M has an entry with key k, remove it from M

size(), empty()
begin(), end(): return iterators to beginning and end of M

Important Issue? 
Using what data structure and algorithm, we implement Map?
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Example

Operation Output Map
empty() true Ø
put(5,A) [(5,A)] (5,A)
put(7,B) [(7,B)] (5,A),(7,B)
put(2,C) [(2,C)] (5,A),(7,B),(2,C)
put(8,D) [(8,D)] (5,A),(7,B),(2,C),(8,D)
put(2,E) [(2,E)] (5,A),(7,B),(2,E),(8,D)
find(7) [(7,B)] (5,A),(7,B),(2,E),(8,D)
find(4) end (5,A),(7,B),(2,E),(8,D)
find(2) [(2,E)] (5,A),(7,B),(2,E),(8,D)
size() 4 (5,A),(7,B),(2,E),(8,D)
erase(5) — (7,B),(2,E),(8,D)
erase(2) — (7,B),(8,D)
find(2) end (7,B),(8,D)
empty() false (7,B),(8,D)
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map in C++
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A Simple List-Based Map
An easiest way of implementing Map
We can efficiently implement a map using an unsorted list 
n We store the items of the map in a list S (based on a doubly-

linked list), in arbitrary order

trailerheader nodes/positions

entries
9 c 6 c 5 c 8 c

7



The find Algorithm

Algorithm find(k):
for each p in [S.begin(), S.end()) do

if p®key() = k then
return p

return S.end() {there is no entry with key equal to k}

We use p®key() as a
shortcut for (*p).key() 
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The put Algorithm

Algorithm put(k,v):
for each p in [S.begin(), S.end()) do

if p®key() = k then
p®setValue(v)
return p

p = S.insertBack((k,v)) {there is no entry with key k}
n = n + 1 {increment number of entries}
return p
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The erase Algorithm

Algorithm erase(k):
for each p in [S.begin(), S.end()) do 

if p.key() = k  then
S.erase(p)
n = n – 1 {decrement number of entries}
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Performance of a List-Based Map
Performance:
n put takes O(n) time since we need to determine whether it is already in 

the sequence
n find and erase take O(n) time since in the worst case (the item is not 

found) we traverse the entire sequence to look for an item with the given 
key

The unsorted list implementation is effective only for maps of 
small size or for maps in which puts are the most common 
operations, while searches and removals are rarely performed 
(e.g., historical record of logins to a workstation)

Can we improve?
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Hash Tables

Æ
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4 451-229-0004

981-101-0002
025-612-0001
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Recall the Map ADT
find(k): if the map M has an entry with key k, return its 
associated value; else, return null 
put(k, v): insert entry (k, v) into the map M; if key k is not 
already in M, then return null; else, return old value associated 
with k
erase(k): if the map M has an entry with key k, remove it from 
M and return its associated value; else, return null 
size(), empty()
entrySet(): return a list of the entries in M
keySet(): return a list of the keys in M
values(): return a list of the values in M
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What about this idea?
We design a table for a map 
storing entries as (SSN, Name), 
where SSN (social security 
number) is a nine-digit positive 
integer

Our table uses an array of size
N = 10,000 and classify each 
person based on the last four 
digits of his/her SSN

Do you think that we can 
speed up searching using this 
method?

Æ
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…
451-229-0004

981-101-0002

200-751-9998

025-612-0001
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Hash Table: Overview
Use key as an “address” for a value

Worst-case performance: still O(n)
But, usually expected performance: O(1)
n Practically very fast

Consists of two major components
n 1. Bucket array
n 2. Hash function
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Bucket Array
An array of size N, where each cell 
of A is “bucket”

Two Issues
n How to choose the bucket size N?

w Large N?
w Small N?

n Keys should be integers, but in 
practice, not always.
w Key: string “yiyung”
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Hash Functions and Hash Tables
A hash function h maps keys of a given type to integers in a fixed 
interval [0, N - 1]
Example:

h(x) = x mod N
is a hash function for integer keys
The integer h(x) is called the hash value of key x

A hash table for a given key type consists of
n Hash function h
n Array (called table or bucket array) of size N

When implementing a map with a hash table, the goal is to store 
item (k, o) at index i = h(k)
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Hash Functions
A hash function is usually specified as 
the composition of two functions:
Hash code:

h1: keys ® integers
Compression function:

h2: integers ® [0, N - 1]

(Note) Keys can be arbitrary objects, e.g., 
string “yiyung”

The hash code is applied first, and the 
compression function is applied next on 
the result, i.e., 

h(x) = h2(h1(x))

The goal of the hash function is to  
“disperse” the keys in an apparently 
random way
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Hash Code and Compress Function
There are extensive theoretical and experiment research 
about “good” hash code and compress functions

In the next 3 slides, 
n We will discuss some basic hash codes and compress 

functions. 
n Looking at their more details is not the beyond of our scope.
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(1) Hash Codes
§ Memory address:

n We reinterpret the memory 
address of the key object as 
an integer

§ Integer cast:
n We reinterpret the bits of the 

key as an integer
n Suitable for keys of length 

less than or equal to the 
number of bits of the integer 
type (e.g., byte, short, int and 
float in C++)

§ Component sum:
n We partition the bits of the key 

into components of fixed length 
(e.g., 16 or 32 bits) and we sum 
the components (ignoring 
overflows)

n Suitable for numeric keys of 
fixed length greater than or 
equal to the number of bits of 
the integer type (e.g., long and 
double in C++)

n But, not good for strings
w “temp01” and “temp10”
w “stop”, “tops”, “pots”, “spot”
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Polynomial Hash Code
Polynomial accumulation:
n We partition the bits of the 

key into a sequence of 
components of fixed length 
(e.g., 8, 16 or 32 bits)

a0 a1 … an-1

n We evaluate the polynomial
p(z) = a0 + a1 z + a2 z2 + … 

… + an-1zn-1

at a fixed value z, ignoring 
overflows

n Especially suitable for strings 
(e.g., the choice z = 33 gives 
at most 6 collisions on a set 
of 50,000 English words)

Polynomial p(z) can be 
evaluated in O(n) time using 
Horner’s rule:
n The following polynomials are 

successively computed, each 
from the previous one in O(1) 
time

p0(z) = an-1

pi (z) = an-i-1 + zpi-1(z)
(i = 1, 2, …, n -1)

We have p(z) = pn-1(z) 

Lots of research about “good 
hash code”

21



(2) Compression Functions

Division:
n h2 (y) = |y| mod N
n The size N of the hash 

table is usually chosen to 
be a prime 

n The reason has to do 
with number theory and 
is beyond the scope of 
this course

Multiply, Add and Divide 
(MAD):
n h2 (y) = |ay + b| mod N
n a and b are nonnegative 

integers such that
a mod N ¹ 0
w Otherwise, every integer 

would map to the same 
value b
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Collision Handling
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451-229-0004
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032-637-0004Insert the entry:

Collisions occur when different 
elements are mapped to the 
same cell



Collision Handling

Separate Chaining: let 
each cell in the table 
point to a linked list of 
entries that map there

Separate chaining is simple, 
but requires additional 
memory outside the table
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Open Addressing: Linear Probing
Open addressing: the colliding item is placed in a different cell of the table

Linear probing: handles collisions by placing the colliding item in the next 
(circularly) available table cell

Each table cell inspected is referred to as a “probe”

Colliding items lump together, causing future collisions to cause a longer 
sequence of probes
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Linear Probing: Example
Example:
n h(x) = x mod 13
n Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12

26



Search with Linear Probing
Consider a hash table A that 
uses linear probing
find(k)
n We start at cell h(k) 
n We probe consecutive 

locations until one of the 
following occurs
w An item with key k is found, 

or
w An empty cell is found, or
w N cells have been 

unsuccessfully probed 

Algorithm find(k)
i ¬ h(k)
p ¬ 0
repeat

c ¬ A[i]
if c = Æ

return null
else if c.key () = k

return c.value()
else

i ¬ (i + 1) mod N
p ¬ p + 1

until p = N
return null

27



Updates with Linear Probing
To handle insertions and 
deletions, we introduce a special 
marker, called AVAILABLE, which 
replaces deleted elements
n Avoids a lot of shift operations

erase(k)
n We search for an entry with 

key k
n If such an entry (k, o) is found, 

we replace it with the special 
item AVAILABLE and we return 
element o

n Else, we return null

put(k, o)
n We throw an exception if the 

table is full
n We start at cell h(k) 
n We probe consecutive cells 

until one of the following occurs
w A cell i is found that is either 

empty or stores AVAILABLE, or
w N cells have been 

unsuccessfully probed

n We store (k, o) in cell i

28



Other Issues
Search with Linear Probing
n Clustering problem

Other open addressing method
n Quadratic Probing, Double Hashing (the details in the book)

The load factor a = n/N affects the performance of a 
hash table

Keeping the load factor below a certain threshold is vital
n Open addressing (requires a < 0.5)
n Separate-chaining (requires a < 0.9)
n Resize the hash table, i.e., rehashing a new table
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Performance of Hashing
In the worst case, searches, 
insertions and removals on a 
hash table take O(n) time

The worst case occurs when all 
the keys inserted into the map 
collide

The load factor a = n/N

Assuming that the hash values 
are like random numbers, it can 
be shown that the expected 
number of probes for an insertion 
with open addressing is

1 / (1 - a) 

But, when well designed, the 
expected running time of all the 
MAP ADT operations in a hash table 
is O(1) 

In practice, hashing is very fast 
provided the load factor is not close 
to 100%
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Questions?


