
Maps

1

Maps

§ A map models a searchable collection of key-value
entries

§ The main operations of a map are for searching,
inserting, and deleting items

§ Multiple entries with the same key are not allowed

§ Applications:
§ address book (yellowpage)
§ student-record database

2

Entry ADT
An entry stores a key-value pair (k,v)
Methods:
n key(): return the associated key
n value(): return the associated value
n setKey(k): set the key to k
n setValue(v): set the value to v

We call this “item” or “element” or “record” exchangeably.

Then, MAP stores multiple a collection of Entries

3

The Map ADT
find(k): if the map M has an entry with key k, return and iterator
to it; else, return special iterator end
put(k, v): if there is no entry with key k, insert entry
(k, v), and otherwise set its value to v. Return an iterator to the
new/modified entry
erase(k): if the map M has an entry with key k, remove it from M

size(), empty()
begin(), end(): return iterators to beginning and end of M

Important Issue?
Using what data structure and algorithm, we implement Map?

4

Example

Operation Output Map
empty() true Ø
put(5,A) [(5,A)] (5,A)
put(7,B) [(7,B)] (5,A),(7,B)
put(2,C) [(2,C)] (5,A),(7,B),(2,C)
put(8,D) [(8,D)] (5,A),(7,B),(2,C),(8,D)
put(2,E) [(2,E)] (5,A),(7,B),(2,E),(8,D)
find(7) [(7,B)] (5,A),(7,B),(2,E),(8,D)
find(4) end (5,A),(7,B),(2,E),(8,D)
find(2) [(2,E)] (5,A),(7,B),(2,E),(8,D)
size() 4 (5,A),(7,B),(2,E),(8,D)
erase(5) — (7,B),(2,E),(8,D)
erase(2) — (7,B),(8,D)
find(2) end (7,B),(8,D)
empty() false (7,B),(8,D)

5

map in C++

6

A Simple List-Based Map
An easiest way of implementing Map
We can efficiently implement a map using an unsorted list
n We store the items of the map in a list S (based on a doubly-

linked list), in arbitrary order

trailerheader nodes/positions

entries
9 c 6 c 5 c 8 c

7

The find Algorithm

Algorithm find(k):
for each p in [S.begin(), S.end()) do

if p®key() = k then
return p

return S.end() {there is no entry with key equal to k}

We use p®key() as a
shortcut for (*p).key()

8

The put Algorithm

Algorithm put(k,v):
for each p in [S.begin(), S.end()) do

if p®key() = k then
p®setValue(v)
return p

p = S.insertBack((k,v)) {there is no entry with key k}
n = n + 1 {increment number of entries}
return p

9

The erase Algorithm

Algorithm erase(k):
for each p in [S.begin(), S.end()) do

if p.key() = k then
S.erase(p)
n = n – 1 {decrement number of entries}

10

Performance of a List-Based Map
Performance:
n put takes O(n) time since we need to determine whether it is already in

the sequence
n find and erase take O(n) time since in the worst case (the item is not

found) we traverse the entire sequence to look for an item with the given
key

The unsorted list implementation is effective only for maps of
small size or for maps in which puts are the most common
operations, while searches and removals are rarely performed
(e.g., historical record of logins to a workstation)

Can we improve?

11

Hash Tables

Æ

Æ

0
1
2
3
4 451-229-0004

981-101-0002
025-612-0001

12

Recall the Map ADT
find(k): if the map M has an entry with key k, return its
associated value; else, return null
put(k, v): insert entry (k, v) into the map M; if key k is not
already in M, then return null; else, return old value associated
with k
erase(k): if the map M has an entry with key k, remove it from
M and return its associated value; else, return null
size(), empty()
entrySet(): return a list of the entries in M
keySet(): return a list of the keys in M
values(): return a list of the values in M

13

What about this idea?
We design a table for a map
storing entries as (SSN, Name),
where SSN (social security
number) is a nine-digit positive
integer

Our table uses an array of size
N = 10,000 and classify each
person based on the last four
digits of his/her SSN

Do you think that we can
speed up searching using this
method?

Æ

Æ

Æ

Æ

0
1
2
3
4

9997
9998
9999

…
451-229-0004

981-101-0002

200-751-9998

025-612-0001

14

Hash Table: Overview
Use key as an “address” for a value

Worst-case performance: still O(n)
But, usually expected performance: O(1)
n Practically very fast

Consists of two major components
n 1. Bucket array
n 2. Hash function

15

Bucket Array
An array of size N, where each cell
of A is “bucket”

Two Issues
n How to choose the bucket size N?

w Large N?
w Small N?

n Keys should be integers, but in
practice, not always.
w Key: string “yiyung”

16

Æ

Æ

Æ

Æ

0
1
2
3
4

9997
9998
9999

…

451-229-0004

981-101-0002

200-751-9998

025-612-0001

Bucket

Hash Functions and Hash Tables
A hash function h maps keys of a given type to integers in a fixed
interval [0, N - 1]
Example:

h(x) = x mod N
is a hash function for integer keys
The integer h(x) is called the hash value of key x

A hash table for a given key type consists of
n Hash function h
n Array (called table or bucket array) of size N

When implementing a map with a hash table, the goal is to store
item (k, o) at index i = h(k)

17

Hash Functions
A hash function is usually specified as
the composition of two functions:
Hash code:

h1: keys ® integers
Compression function:

h2: integers ® [0, N - 1]

(Note) Keys can be arbitrary objects, e.g.,
string “yiyung”

The hash code is applied first, and the
compression function is applied next on
the result, i.e.,

h(x) = h2(h1(x))

The goal of the hash function is to
“disperse” the keys in an apparently
random way

18

Hash Code and Compress Function
There are extensive theoretical and experiment research
about “good” hash code and compress functions

In the next 3 slides,
n We will discuss some basic hash codes and compress

functions.
n Looking at their more details is not the beyond of our scope.

19

(1) Hash Codes
§ Memory address:

n We reinterpret the memory
address of the key object as
an integer

§ Integer cast:
n We reinterpret the bits of the

key as an integer
n Suitable for keys of length

less than or equal to the
number of bits of the integer
type (e.g., byte, short, int and
float in C++)

§ Component sum:
n We partition the bits of the key

into components of fixed length
(e.g., 16 or 32 bits) and we sum
the components (ignoring
overflows)

n Suitable for numeric keys of
fixed length greater than or
equal to the number of bits of
the integer type (e.g., long and
double in C++)

n But, not good for strings
w “temp01” and “temp10”
w “stop”, “tops”, “pots”, “spot”

20

Polynomial Hash Code
Polynomial accumulation:
n We partition the bits of the

key into a sequence of
components of fixed length
(e.g., 8, 16 or 32 bits)

a0 a1 … an-1

n We evaluate the polynomial
p(z) = a0 + a1 z + a2 z2 + …

… + an-1zn-1

at a fixed value z, ignoring
overflows

n Especially suitable for strings
(e.g., the choice z = 33 gives
at most 6 collisions on a set
of 50,000 English words)

Polynomial p(z) can be
evaluated in O(n) time using
Horner’s rule:
n The following polynomials are

successively computed, each
from the previous one in O(1)
time

p0(z) = an-1

pi (z) = an-i-1 + zpi-1(z)
(i = 1, 2, …, n -1)

We have p(z) = pn-1(z)

Lots of research about “good
hash code”

21

(2) Compression Functions

Division:
n h2 (y) = |y| mod N
n The size N of the hash

table is usually chosen to
be a prime

n The reason has to do
with number theory and
is beyond the scope of
this course

Multiply, Add and Divide
(MAD):
n h2 (y) = |ay + b| mod N
n a and b are nonnegative

integers such that
a mod N ¹ 0
w Otherwise, every integer

would map to the same
value b

22

Collision Handling

Æ

Æ

Æ

Æ

0
1
2
3
4

9997
9998
9999

…

451-229-0004

981-101-0002

200-751-9998

025-612-0001
032-637-0004Insert the entry:

Collisions occur when different
elements are mapped to the
same cell

Collision Handling

Separate Chaining: let
each cell in the table
point to a linked list of
entries that map there

Separate chaining is simple,
but requires additional
memory outside the table

24

h(y) = y mod 13

Open Addressing: Linear Probing
Open addressing: the colliding item is placed in a different cell of the table

Linear probing: handles collisions by placing the colliding item in the next
(circularly) available table cell

Each table cell inspected is referred to as a “probe”

Colliding items lump together, causing future collisions to cause a longer
sequence of probes

25

h(x) = x mod 11

Linear Probing: Example
Example:
n h(x) = x mod 13
n Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12

26

Search with Linear Probing
Consider a hash table A that
uses linear probing
find(k)
n We start at cell h(k)
n We probe consecutive

locations until one of the
following occurs
w An item with key k is found,

or
w An empty cell is found, or
w N cells have been

unsuccessfully probed

Algorithm find(k)
i ¬ h(k)
p ¬ 0
repeat

c ¬ A[i]
if c = Æ

return null
else if c.key () = k

return c.value()
else

i ¬ (i + 1) mod N
p ¬ p + 1

until p = N
return null

27

Updates with Linear Probing
To handle insertions and
deletions, we introduce a special
marker, called AVAILABLE, which
replaces deleted elements
n Avoids a lot of shift operations

erase(k)
n We search for an entry with

key k
n If such an entry (k, o) is found,

we replace it with the special
item AVAILABLE and we return
element o

n Else, we return null

put(k, o)
n We throw an exception if the

table is full
n We start at cell h(k)
n We probe consecutive cells

until one of the following occurs
w A cell i is found that is either

empty or stores AVAILABLE, or
w N cells have been

unsuccessfully probed

n We store (k, o) in cell i

28

Other Issues
Search with Linear Probing
n Clustering problem

Other open addressing method
n Quadratic Probing, Double Hashing (the details in the book)

The load factor a = n/N affects the performance of a
hash table

Keeping the load factor below a certain threshold is vital
n Open addressing (requires a < 0.5)
n Separate-chaining (requires a < 0.9)
n Resize the hash table, i.e., rehashing a new table

29

Performance of Hashing
In the worst case, searches,
insertions and removals on a
hash table take O(n) time

The worst case occurs when all
the keys inserted into the map
collide

The load factor a = n/N

Assuming that the hash values
are like random numbers, it can
be shown that the expected
number of probes for an insertion
with open addressing is

1 / (1 - a)

But, when well designed, the
expected running time of all the
MAP ADT operations in a hash table
is O(1)

In practice, hashing is very fast
provided the load factor is not close
to 100%

30

Questions?

