Maps

Entry ADT

@ An entry stores a key-value pair (k,v)

@ Methods:
key(): return the associated key

value(): return the associated value
setKey(k): set the key to k
setValue(v): set the value to v

@ We call this “item” or “element” or “record” exchangeably.

@ Then, MAP stores multiple a collection of Entries

Maps

= A map models a searchable collection of key-value
entries

® The main operations of a map are for searching,
inserting, and deleting items

= Multiple entries with the same key are not allowed

-
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= Applications:
« address book (yellowpage)
- student-record database

The Map ADT %

@ find(k): if the map M has an entry with key k, return and iterator
to it; else, return special iterator end

@ put(k, v): if there is no entry with key k, insert entry
(k, v), and otherwise set its value to v. Return an iterator to the
new/modified entry

@ erase(k): if the map M has an entry with key k, remove it from M

@ size(), empty()
@ begin(), end(): return iterators to beginning and end of M

9 Important Issue?
Using what data structure and algorithm, we implement Map?



Example map in C++

Operation Output Map

empty() true 0] 01

put(5,A) [(5,A)] (5,A) sstring,int> m;

put(7,B) [(7,B)] (5,A),(7,8) R Incert (aseoairy

put2¢)  12,0) (5A)(7,8),2.0) :

put(8,D) [(8,D)] (5,A),(7,B),(2,C),(8,D) ni'eT =6 .

put(2,E) [(2,E)] (5,A),(7,8),(2,E),(8,D) m.erase(*dn) a count : 1

find(7) [(7,B)] (5,A),(7,B),(2,E),(8,D) L Eecoyn; ;a{ue )

find(4) end (5,A),(7,B),(2,E),(8,D) =) < msine << key : b value :

find(2) [(2,E)] (5,A),(7,8),(2,E),(8,D) T <¢ m.ind("a")->second << key : c value :

size() 4 (5,A),(7,8),(2,E),(8,D) o o

erase(5) — (7,B),(2,E),(8,D) cout << << m.count("b") <<

erase(2) — (7,8),(8,D) PHOIIn e I PR T D e Bl

find(2) end (7,B),(8,D)

empty() false (7,B),(8,D)
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A Simple List-Based Map The find Algorithm

@ An easiest way of implementing Map

@ We can efficiently implement a map using an unsorted list
Algorithm find(k):

for each p in [S.begin(), S.end()) do
if p—key() = k then

m We store the items of the map in a list S (based on a doubly-
linked list), in arbitrary order

return p-...

return S.end()

header |

w|/|@/|r|’@/|/|

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

777777777777777777777777777777777777777777777777 Wé use p—key() as a

r 6 an Gl - shortcut for (*p).key()




The put Algorithm The erase Algorithm

Algorithm put(k,v): Algorithm erase(k):
for each p in [S.begin(), S.end()) do for each p in [S.begin(), S.end()) do
if p—key() = k then if p.key() = k then
p—>setValue(v) S.erase(p)
return p n=n-1 {decrement number of entries}

p = S.insertBack((k,v)) {there is no entry with key k}
n=n+1 {increment number of entries}

return p

Performance of a List-Based Map

@ Performance:
= put takes O(n) time since we need to determine whether it is already in
the sequence

m find and erase take O(n) time since in the worst case (the item is not

found) we traverse the entire sequence to look for an item with the given H aSh Ta bles

key

0|@
@ The unsorted list implementation is effective only for maps of 1 025-612-0001
p y p

small size or for maps in which puts are the most common 2 981-101-0002
operations, while searches and removals are rarely performed 2 2 A51335-0003

(e.g., historical record of logins to a workstation)

@ Can we improve?
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Recall the Map ADT

@ find(k): if the map M has an entry with key k, return its
associated value; else, return null

@ put(k, v): insert entry (k, v) into the map M; if key k is not
already in M, then return null; else, return old value associated
with k

@ erase(k): if the map M has an entry with key k, remove it from
M and return its associated value; else, return null

@ size(), empty()

@ entrySet(): return a list of the entries in M
@ keySet(): return a list of the keys in M

@ values(): return a list of the values in M

Hash Table: Overview

@ Use key as an “address” for a value

@ Worst-case performance: still O(n)
@ But, usually expected performance: O(1)
m Practically very fast

@ Consists of two major components
= 1. Bucket array
m 2. Hash function
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What about this idea?

@ We design a table for a map
storing entries as (SSN, Name),
where SSN (social security
number) is a nine-digit positive
integer

@ Our table uses an array of size
N =10,000 and classify each
person based on the last four
digits of his/her SSN

@ Do you think that we can
speed up searching using this
method?

Bucket Array

@ An array of size N, where each cell
of A is “bucket”

@ Two Issues
m How to choose the bucket size N?
¢ Large N?
+ Small N?
m Keys should be integers, but in
practice, not always.
¢ Key: string “yiyung”

025-612-0001
981-101-0002

451-229-0004

AL —O
|r|®|1| [

9997
9998
9999

200-751-9998|

ol ]
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Bucket

025-612-0001
—( 981-101-0002

451-229-0004

AW —O
Ltlalt]t]e]—

9997
9998
9999

200-751-9998

ol ] -



Hash Functions and Hash Tables

@ A hash function h maps keys of a given type to integers in a fixed
interval [0, N - 1]

@ Example:
h(x) =xmod N
is a hash function for integer keys

@ The integer h(x) is called the hash value of key x

@ A hash table for a given key type consists of
m Hash function h
m Array (called table or bucket array) of size N

9 When implementing a map with a hash table, the goal is to store
item (k, o) at index i = h(k)
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Hash Code and Compress Function

@ There are extensive theoretical and experiment research
about “good” hash code and compress functions

@ |n the next 3 slides,

m We will discuss some basic hash codes and compress
functions.

m Looking at their more details is not the beyond of our scope.
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Hash Functions

@ A hash function is usually specified as
the composition of two functions:
Hash code:

h;: keys — integers
Compression function:
h,: integers — [0, N - 1]

(Note) Keys can be arbitrary objects, e.g.,
string “yiyung”

)

M

@ The hash code is applied first, and the

compression function is applied next on
the result, i.e.,

h(x) = hy(h,(x))

The goal of the hash function is to
“disperse” the keys in an apparently
random way

Arbitrary Objects

hash code

- ........g?g?g........ >

000000000O0CFO
012 - N-1

(1) Hash Codes

= Memory address:

= We reinterpret the memory
address of the key object as
an integer

" Integer cast:

= We reinterpret the bits of the
key as an integer

m Suitable for keys of length
less than or equal to the
number of bits of the integer
type (e.g., byte, short, int and
float in C++)
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0‘100,“’"1
010709, 1,

= Component sum:

m  We partition the bits of the key
into components of fixed length
(e.g., 16 or 32 bits) and we sum
the components (ignoring
overflows)

m Suitable for numeric keys of
fixed length greater than or
equal to the number of bits of
the integer type (e.g., long and
double in C++)

m But, not good for strings

* “temp01” and “temp10”

” u n u ”n u

* “stop”, “tops”, “pots”, “spot”
20



Polynomial Hash Code (2) Compression Functions

@ Polynomial accumulation: @ Polynomial p(z) can be @ Division: @ Multiply, Add and Divide

m We partition the bits of the

key into a sequence of
components of fixed length

(e.g., 8, 16 or 32 bits)
ao al e an,l
= We evaluate the polynomial

evaluated in O(n) time using
Horner’s rule:

m The following polynomials are
successively computed, each
from the previous one in O(1)

= hy(y)=[y/ mod N
m The size N of the hash

table is usually chosen to

be a prime

(MAD):

m h,(y)=l|ay + bl mod N

m a and b are nonnegative
integers such that

p(z2)=ay+a,z +a,22 + ... time amod N # 0
Lot a, Z"'l = H i
at a fixed value zn ilgnoring pol2) = = The reason has to do ’ OtheI;WIse' ‘:ViLV g
) (2)=a.. . . would map to the same
overflows Pi (2) = @i + 2pia(2) with number theory and P
(i=1,2,..,n-1) . value b
® Weh is beyond the scope of
m Especially suitable for strings e have p(z) = p,4(2) this course
(e.g., the choice z = 33 gives
at most 6 collisions on a set
of 50,000 English words) @ Lots of research about “good
hash code”
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Collision Handling Collision Handling

@ Separate chaining is simple,

@ Separate Chaining: let but requires additional

Iz 1 032-637-0004] .
(1) 2 e Insert the entry: each cell in the table memory outside the table
2 [~+[ 981-101-0002 point to a linked list of
3|9 entries that map there 0 1 23 45678910112
4 [1-(451-220-0004 A\T\r|!r|i
9997 [¢] O
9998 [ )
999912 Collisions occur when different @
elements are mapped to the
same cell o~

h(y) =y mod 13
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Open Addressing: Linear Probing

@ Open addressing: the colliding item is placed in a different cell of the table

@ Linear probing: handles collisions by placing the colliding item in the next
(circularly) available table cell

@ Each table cell inspected is referred to as a “probe”

@ Colliding items lump together, causing future collisions to cause a longer
sequence of probes

must probe 4 times
New element with before finding empty slot

key = 15 to be inserted h(x) = xmod 11

B YA YA VYA
5 6

0 1 2 3 4 7 8 9 10

13 26 5 37 16 21
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Search with Linear Probing

# Consider a hash table A that

uses linear probing Algorithm find(k)
@ find(k) i < h(k)
m We start at cell h(k) p < Ot
= We probe consecutive repea Al
locations until one of the ¢« Alf]
ifc=0

following occurs

+ An item with key k is found, return null
or else if c.key () =k

* An empty cell is found, or return c.value()
* N cells have been else
unsuccessfully probed i« ({i+1)mod N
p<—p+1
until p=N
return null
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Linear Probing: Example

@ Example:
m h(x)=xmod 13
m Insert keys 18, 41, 22, 44,59, 32, 31, 73, in this order

012345678 9101112

[ | [ad | |18 445939293173 |
0123 456 78 9101112

26

Updates with Linear Probing

@ To handle insertions and @ put(k, o)
deletions, we introduce a special
marker, called AVAILABLE, which
replaces deleted elements

= Avoids a lot of shift operations

m We throw an exception if the
table is full

= We start at cell h(k)

m We probe consecutive cells
until one of the following occurs

® erase(k) ) + Acell iis found that is either
= We search for an entry with empty or stores AVAILABLE, or
key k + N cells have been

= If such an entry (k, 0) is found, unsuccessfully probed
we replace it with the special
item AVAILABLE and we return

s We store (k, 0) in cell i
element o

m Else, we return null

28



Other Issues

@ Search with Linear Probing
m Clustering problem
@ Other open addressing method
m Quadratic Probing, Double Hashing (the details in the book)

@ The load factor a = n/N affects the performance of a
hash table

@ Keeping the load factor below a certain threshold is vital
m Open addressing (requires a < 0.5)
m Separate-chaining (requires a < 0.9)

m Resize the hash table, i.e., rehashing a new table
29

Questions?

Performance of Hashing

@ In the worst case, searches,

insertions and removals on a
hash table take O(n) time

The worst case occurs when all
the keys inserted into the map
collide

The load factor a = n/N

Assuming that the hash values
are like random numbers, it can
be shown that the expected
number of probes for an insertion
with open addressing is

1/(1-a)

@ But, when well designed, the
expected running time of all the
MAP ADT operations in a hash table
is 0(1)

@ In practice, hashing is very fast
provided the load factor is not close
to 100%
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