Priority Queues

Introduction

- Priority Queue
 - Data structure for storing a collection of prioritized elements
 - Supporting arbitrary element insertion
 - Supporting removal of elements in order of priority
- So far, we covered "position-based" data structures
 - Stacks, queues, deques, lists, and even lists
 - Store elements at specific positions (linear or hierarchical)
 - Insertion and removal based on "position" (linear or hierarchical)
 - But, priority queue
 - Insertion and removal: priority-based
- Question: how to express the priority of an element
 - Key (example: your student id)

Priority Queue ADT

- A priority queue stores a collection of entries
- Typically, an entry is a pair (key, value), where the key indicates the priority
- Main methods of the Priority Queue ADT
 - insert(e)
 inserts an entry e (with an implicit associated key value)
 - removeMin()
 removes the entry with smallest key

- Additional methods
 - min()
 returns, but does not remove, an
 entry with smallest key
 - size(), empty()
- Applications:
 - Standby flyers
 - Auctions
 - Stock market

Total Order Relations (a topic of Discrete Math)

- Keys in a priority queue can be arbitrary objects on which an order is defined
- Two distinct entries in a priority queue can have the same key
- Total ordering
 - Comparison rule should be defined for every pair of keys

- ◆ Mathematical concept of total order relation ≤
 - Reflexive property: $x \le x$
 - Antisymmetric property: $x \le y \land y \le x \Rightarrow x = y$
 - Transitive property: $x \le y \land y \le z \Rightarrow x \le z$
- Satisfying the above three properties ensures:
 - Never leading to a comparison contradiction

Example: Total order & Partial order

- 2D points with (x-coordinate, y-coordinate)
 - Define relation '>=' based on x-first, and y-next
 - **•** (4,3) >= (3,4), (3,5) >= (3,4)
 - Total ordering
 - What about defining relation '>=' based on both x and y
 - \blacksquare (4,3) >=(2,1), but (4,3) ??? (3,4)
 - Partial ordering
 - Comparison not defined for some objects
- We assume that we define a comparison that leads to total ordering.

Priority Queue Sorting

- We can use a priority queue to sort a set of comparable elements
 - 1. Insert the elements one by one with a series of insert operations
 - 2. Remove the elements in sorted order with a series of removeMin operations
- The running time of this sorting method depends on the priority queue implementation

```
Algorithm PQ-Sort(S, C)
    Input sequence S, comparator C for
    the elements of S
    Output sequence S sorted in
    increasing order according to C
    P \leftarrow priority queue with
         comparator C
    while \neg S.empty()
         e \leftarrow S.front(); S.eraseFront()
         P.insert (e, \emptyset)
    while \neg P.empty()
         e \leftarrow P.removeMin()
         S.insertBack(e)
```

Sequence-based Priority Queue

Implementation with an unsorted list

- Performance:
 - insert takes O(1) time since we can insert the item at the beginning or end of the sequence
 - removeMin and min take
 O(n) time since we have to
 traverse the entire sequence
 to find the smallest key

Implementation with a sorted list

- Performance:
 - insert takes *O*(*n*) time since we have to find the place where to insert the item
 - removeMin and min take O(1) time, since the smallest key is at the beginning

Selection-Sort

- Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted sequence
- Running time of Selection-sort:
 - 1. Inserting the elements into the priority queue with n insert operations takes O(n) time
 - 2. Removing the elements in sorted order from the priority queue with *n* removeMin operations takes time proportional to

$$1 + 2 + ... + n$$

 \bullet Selection-sort runs in $O(n^2)$ time

Selection-Sort Example

Input:	Sequence S (7,4,8,2,5,3,9)	Priority Queue P ()
Phase 1 (a)	(4,8,2,5,3,9)	(7)
(b)	(8,2,5,3,9)	(7,4)
 (g)	()	(7,4,8,2,5,3,9)
Phase 2		
(a)	(2)	(7,4,8,5,3,9)
(b)	(2,3)	(7,4,8,5,9)
(c)	(2,3,4)	(7,8,5,9)
(d)	(2,3,4,5)	(7,8,9)
(e)	(2,3,4,5,7)	(8,9)
(f)	(2,3,4,5,7,8)	(9)
(g)	(2,3,4,5,7,8,9)	()

Insertion-Sort

- Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted sequence
- Running time of Insertion-sort:
 - 1. Inserting the elements into the priority queue with *n* insert operations takes time proportional to

$$1 + 2 + ... + n$$

- 2. Removing the elements in sorted order from the priority queue with a series of n removeMin operations takes O(n) time
- Insertion-sort runs in $O(n^2)$ time

Insertion-Sort Example

Input:	Sequence S (7,4,8,2,5,3,9)	Priority queue P ()
Phase 1		
(a)	(4,8,2,5,3,9)	(7)
(b)	(8,2,5,3,9)	(4,7)
(c)	(2,5,3,9)	(4,7,8)
(d)	(5,3,9)	(2,4,7,8)
(e)	(3,9)	(2,4,5,7,8)
(f)	(9)	(2,3,4,5,7,8)
(g)	()	(2,3,4,5,7,8,9)
Phase 2		
(a)	(2)	(3,4,5,7,8,9)
(b)	(2,3)	(4,5,7,8,9)
	(2.2.4.5.7.0.0)	
(g)	(2,3,4,5,7,8,9)	()

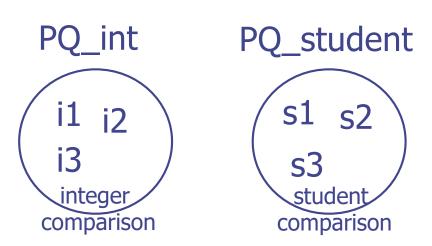
Another design method

How to define order for any object? (1)

- Integer, float, double
 - Quite clear on how to define "order"
- Student: id, sex, department
 - S1 is less than S2? In what sense?
- Flight Passengers: airplane number, seat number, sex
 - P1 is less than P2? In what sense?
- Now to design "comparison logic" in a programming language?
- What design is good?

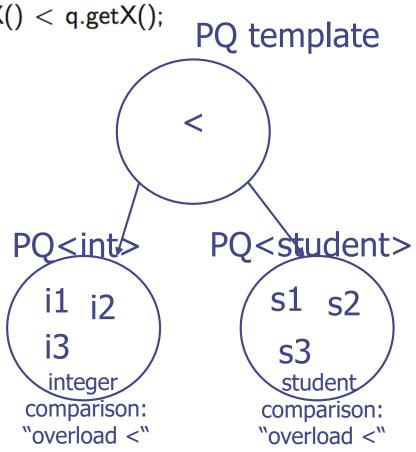
Design 1: Separate Design

- Different Priority Queue based on the element type and the manner of comparing elements
- PQ_Int, PQ_Student, PQ_XXX
- Simple, but not general
- Many copies of the same code



Design 2: Template and Overloading (2)

- General enough for many situations
- But,
 - Cannot have multiple comparison methods for the same type
 - What about comparison based on yfirst, and x-next?
- Even for the same data type, we want to apply different comparison methods A or B, depending on the situations

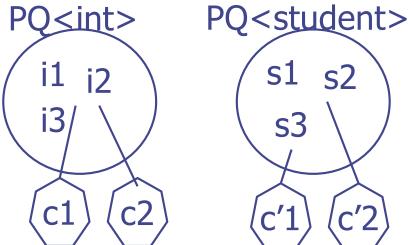


Design 3: Separating Comparator (1)

- 2D points: Point2D p, Point 2: q
 - Sometimes we want either of
 X-based comparison, Y-based comparison
- Idea
 - Define a comparator class, e.g., "LeftRight" (x-based) and "BottomTop" (y-based)
 - Overload "()" operator

Design 3: Separating Comparator (2)

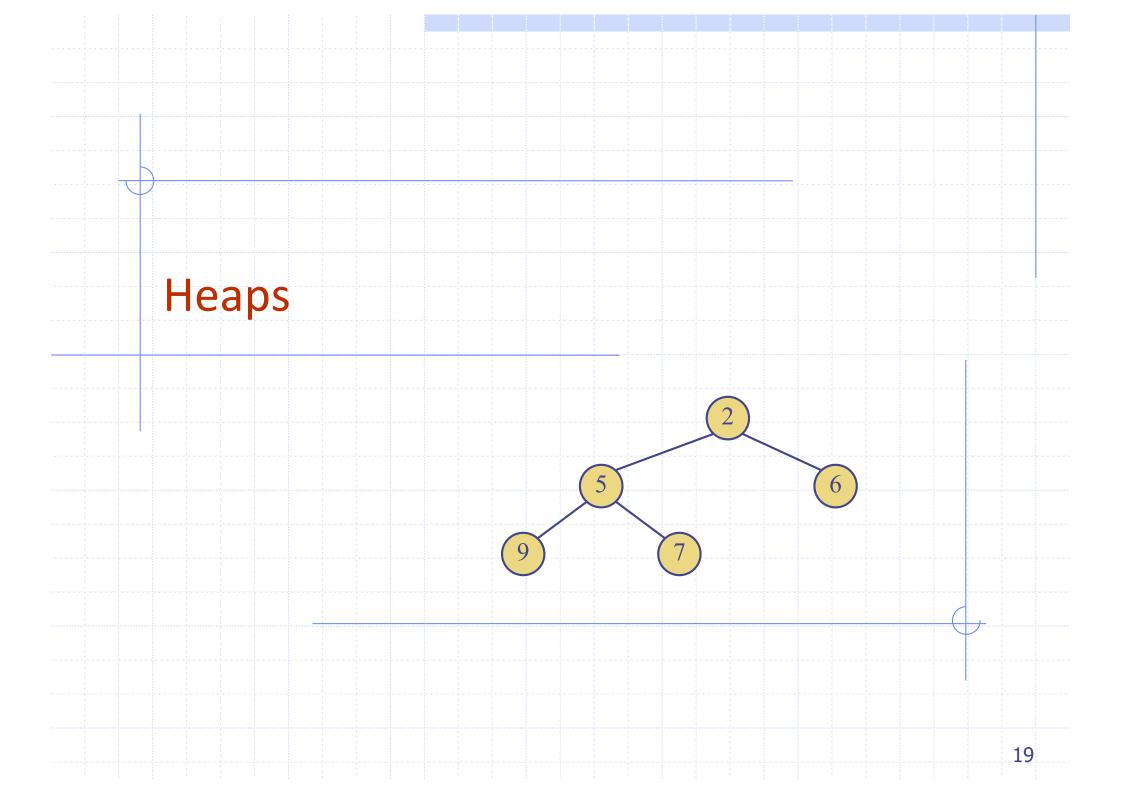
```
Point2D p(1.3, 5.7), q(2.5, 0.6); // two points
LeftRight leftRight; // a left-right comparator
BottomTop bottomTop; // a bottom-top comparator
printSmaller(p, q, leftRight); // outputs: (1.3, 5.7)
printSmaller(p, q, bottomTop); // outputs: (2.5, 0.6)
```



In C++

```
#include <algorithm>
#include <functional>
#include <array>
#include <iostream>
// sort using a custom function object
struct MyLess{
  bool operator()(int a, int b) const
          return a > b; }
int main()
    std::array<int, 10 > s = \{5, 7, 4, 2, 8, 6, 1, 9, 0, 3\};
    // sort using the default operator<
    std::sort(s.begin(), s.end());
    for (int i=0 ; i<s.size();i++) {</pre>
        std::cout << s[i] << " ";
    std::cout << '\n';
    MyLess myless;
    std::sort(s.begin(), s.end(), myless);
    for (int i=0 ; i<s.size();i++) {</pre>
        std::cout << s[i] << " ";
    std::cout << '\n':
```

```
[[yi@iMacyung ~/tmp]# ./a.out
0 1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1 0
```



Recall Priority Queue ADT

- A priority queue stores a collection of entries
- Typically, an entry is a pair (key, value), where the key indicates the priority
- Main methods of the Priority Queue ADT
 - insert(e) inserts an entry e
 - removeMin()removes the entry with smallest key

- Additional methods
 - min() returns, but does not remove, an entry with smallest key
 - size(), empty()
- Applications:
 - Standby flyers
 - Auctions
 - Stock market

Recall PQ Sorting

- We use a priority queue
 - Insert the elements with a series of insert operations
 - Remove the elements in sorted order with a series of removeMin operations
- The running time depends on the priority queue implementation:
 - Unsorted sequence gives selection-sort: $O(n^2)$ time
 - Sorted sequence gives insertionsort: $O(n^2)$ time
- Can we do better? Balancing the above


```
Algorithm PQ-Sort(S, C)
     Input sequence S, comparator C
     for the elements of S
     Output sequence S sorted in
    increasing order according to C
    P \leftarrow priority queue with
         comparator C
     while \neg S.empty ()
         e \leftarrow S.front(); S.eraseFront()
         P.insert (e, \emptyset)
    while \neg P.empty()
         e \leftarrow P.removeMin()
         S.insertBack(e)
```

We will have these results soon ...

Sequence-based

Operation	Unsorted List	Sorted List
size, empty	<i>O</i> (1)	<i>O</i> (1)
insert	<i>O</i> (1)	O(n)
min, removeMin	O(n)	<i>O</i> (1)

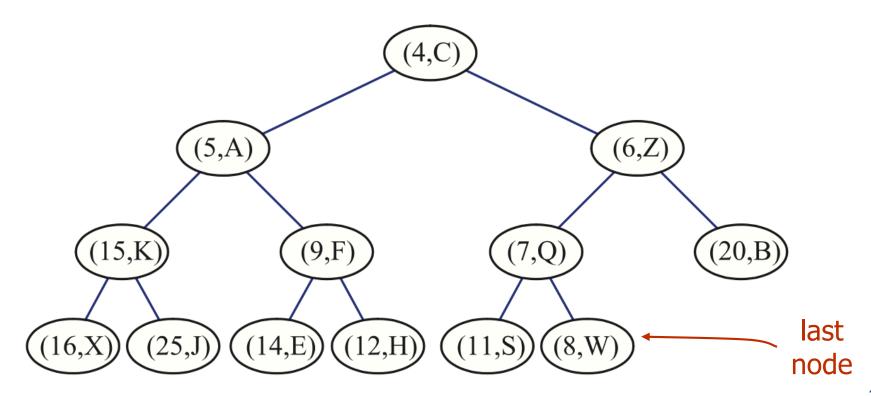
Heap-based

Operation	Time
size, empty	<i>O</i> (1)
min	<i>O</i> (1)
insert	$O(\log n)$
removeMin	$O(\log n)$

Key: Where were the "unnecessary repetitions" and "stupidity"?

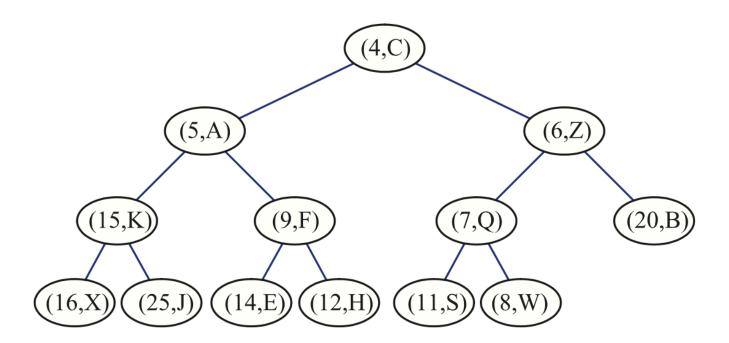
Heap: Overview

- A heap is a binary tree storing keys at its nodes and satisfying the following properties:
 - 1. Heap-order property
 - 2. Complete binary tree property
- The last node of a heap is the rightmost node of maximum depth



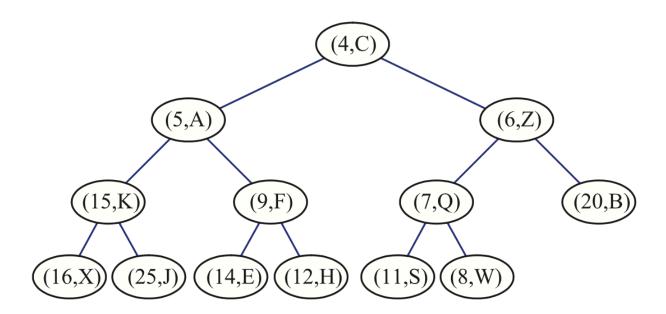
1. Heap-order property

- **1.** Heap-Order: for every internal node v other than the root, $key(v) \ge key(parent(v))$
 - The keys encountered on a path from the root to a leaf T are nondecreasing
 - A minimum key: always at the root



2. Complete binary tree property

- Complete Binary Tree
 - Roughly speaking, every level, except for the last level, is completely filled, and all nodes in the last level are as far left as possible.
- lack rightarrow let h be the height of the heap
 - for i = 0, ..., h 1, there are 2^i nodes of depth i
 - at depth h-1, the internal nodes are to the left of the external nodes



Height of a Heap of *n* elements

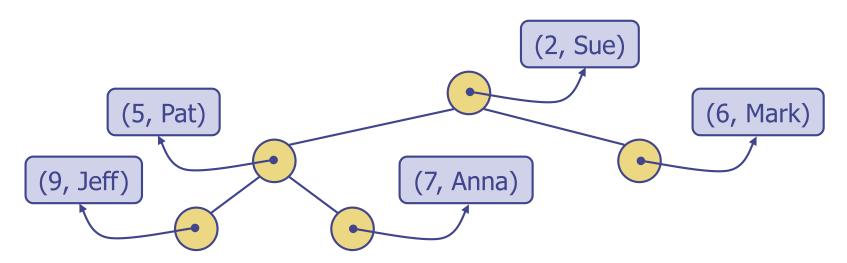
Theorem: A heap storing n keys has height $O(\log n)$ Proof: (we apply the complete binary tree property)

- Let h be the height of a heap storing n keys
- Since there are 2^i keys at depth i = 0, ..., h-1 and at least one key at depth h, we have $n \ge 1 + 2 + 4 + ... + 2^{h-1} + 1$
- Thus, $n \ge 2^h$, i.e., $h \le \log n$



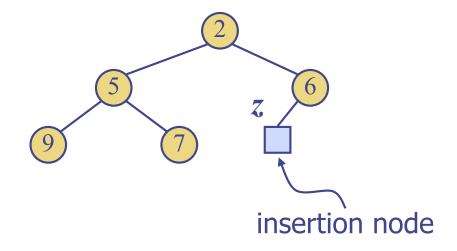
Heaps and Priority Queues

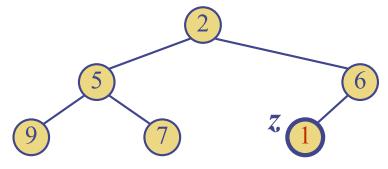
- We can use a heap to implement a priority queue
 - We say "heap-based PQ implementation"
- We store a (key, element) item at each internal node
- We keep track of the position of the last node
 - I am able to know who is the last node in O(1) time
 - Easy



Insertion into a Heap

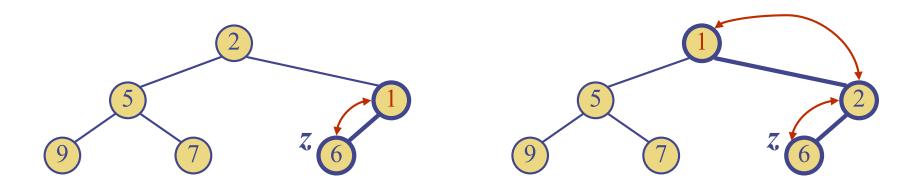
- Method insert of the priority queue ADT corresponds to the insertion of a key k to the heap
- The insertion algorithm consists of three steps
 - Find the insertion node *z* (the new last node)
 - How? discussed later
 - Store k at z.
 - Restore the heap-order property (discussed next)



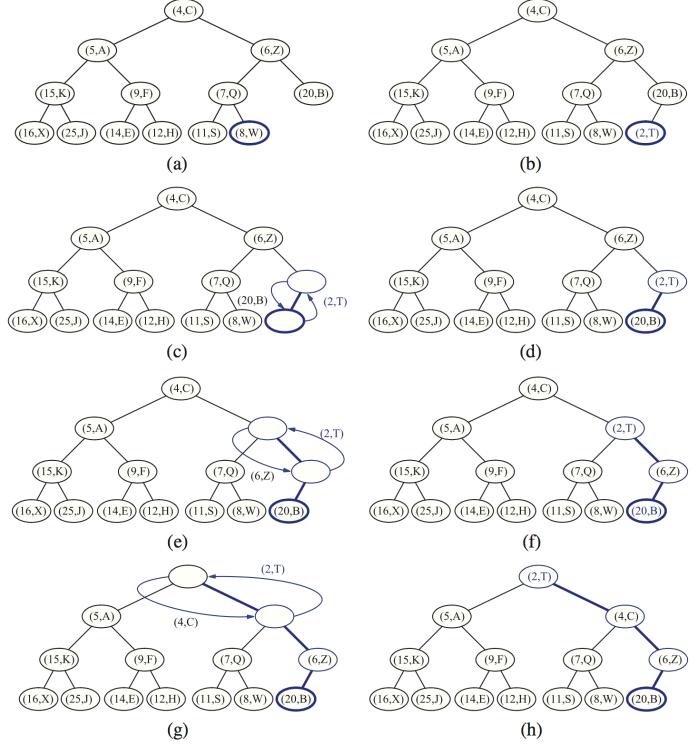


Upheap

- lacklose After the insertion of a new key k, the heap-order property may be violated
- lacktriangle Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node
- lackloss Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- ullet Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time

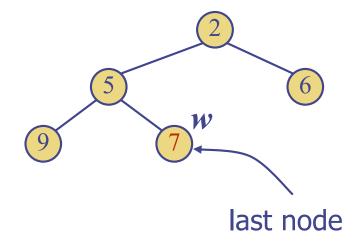


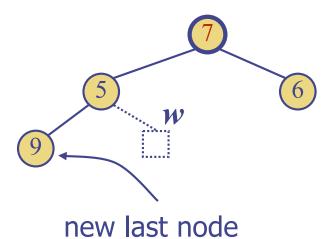
Insert: (2,T)



Removal from a Heap

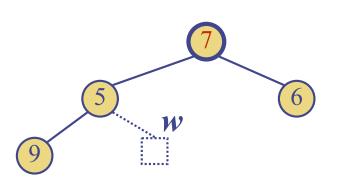
- Method removeMin of the priority queue ADT corresponds to the removal of the root key from the heap
- The removal algorithm consists of three steps
 - Replace the root key with the key of the last node w
 - Remove w
 - Restore the heap-order property (discussed next)

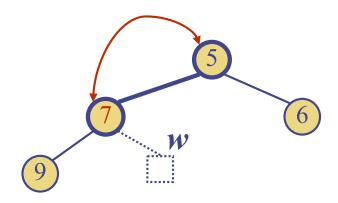




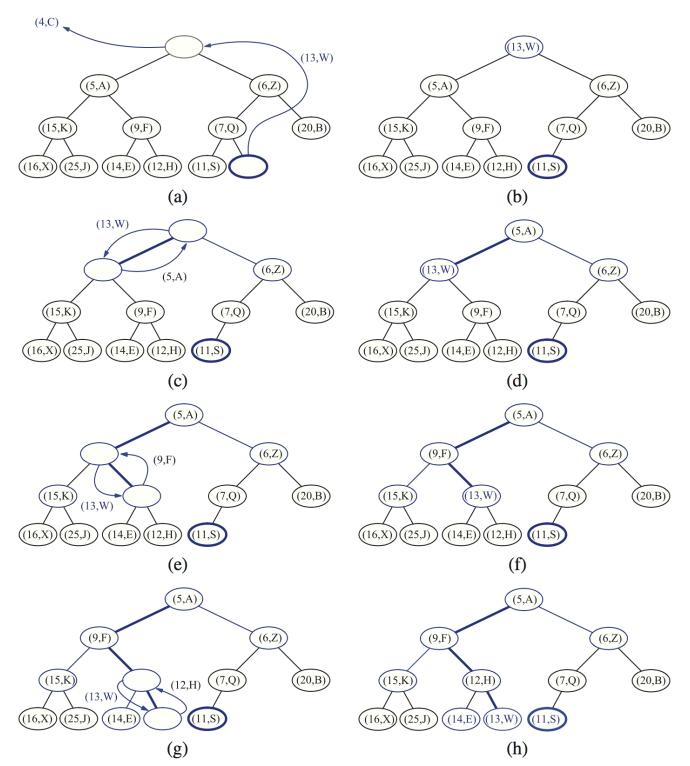
Downheap

- lacktriangle After replacing the root key with the key k of the last node, the heap-order property may be violated
- lacktriangle Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root (but which path?)
- lacktriangle Upheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- lacktriangle Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time



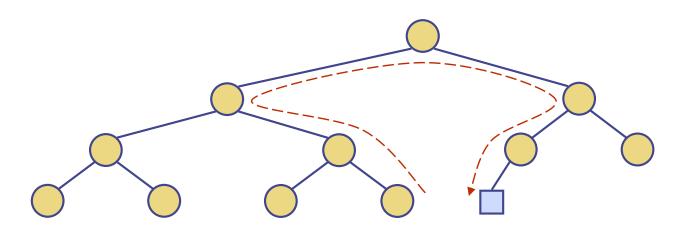


removeMin



Updating the Last Node

- How can we find the insertion node (a new last node)?
 - The insertion node can be found by traversing a path of $O(\log n)$ nodes
 - (1) Go up until a left child or the root is reached
 - (2) If a left child is reached, go to the right child
 - (3) Go down left until a leaf is reached
- Similar algorithm for updating the last node after a removal



Heap-Sort

- Consider a priority queue
 with *n* items implemented
 by means of a heap
 - the space used is O(n)
 - methods insert and removeMin take O(log n) time
 - methods size, empty, and min take time O(1) time

- Using a heap-based priority queue, we can sort a sequence of n elements in $O(n \log n)$ time
 - Construction: n insertions
 - Actual sorting: n removals
- The resulting algorithm is called heap-sort
- Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort

Sequence-based vs. Heap-based

Sequence-based

Operation	Unsorted List	Sorted List
size, empty	<i>O</i> (1)	<i>O</i> (1)
insert	<i>O</i> (1)	O(n)
min, removeMin	O(n)	<i>O</i> (1)

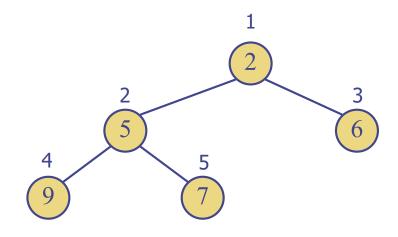
Heap-based

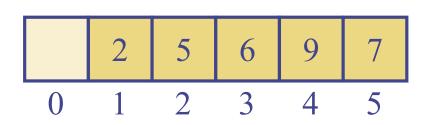
Operation	Time
size, empty	<i>O</i> (1)
min	<i>O</i> (1)
insert	$O(\log n)$
removeMin	$O(\log n)$

How do we remove "stupid repetition"?

Vector-based Heap Implementation

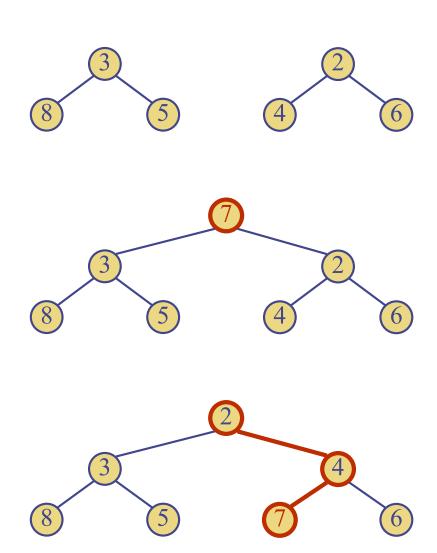
- We can represent a heap with n keys by means of a vector of length n + 1
- lack For the node at rank i
 - the left child is at rank 2i
 - the right child is at rank 2i + 1
- Links between nodes are not explicitly stored
- The cell of at rank 0 is not used
- Operation insert corresponds to inserting at rank n + 1
- Operation removeMin corresponds to removing at rank





Merging Two Heaps

- lacktriangle We are given two heaps and a key k
- We create a new heap with the root node storing k and with the two heaps as subtrees
- We perform downheap to restore the heap-order property



Questions?