NID

Priority Queues

AN

Introduction

@ Priority Queue
m Data structure for storing a collection of prioritized elements
m Supporting arbitrary element insertion
m Supporting removal of elements in order of priority

@ So far, we covered “position-based” data structures
m Stacks, queues, deques, lists, and even lists
m Store elements at specific positions (linear or hierarchical)
m Insertion and removal based on “position” (linear or hierarchical)

m But, priority queue
¢ Insertion and removal: priority-based

@ Question: how to express the priority of an element
m Key (example: your student id)

Priority Queue ADT

@ A priority queue stores a
collection of entries

@ Typically, an entry is a pair
(key, value), where the key
indicates the priority

@ Main methods of the Priority
Queue ADT

m insert(e)
inserts an entry e (with an
implicit associated key value)

= removeMin()

removes the entry with smallest

key

#® Additional methods

min()
returns, but does not remove, an
entry with smallest key

size(), empty()

@ Applications:

Standby flyers
Auctions
Stock market

Total Order Relations (a topic of Discrete Math)

@ Keys in a priority queue
can be arbitrary objects

on which an order is
defined

@ Two distinct entries in a
priority queue can have
the same key

@ Total ordering

m Comparison rule should
be defined for every pair
of keys

@ Mathematical concept of
total order relation <

m Reflexive property:
X< Xx

s Antisymmetric property:
XSPAYSX=>X=Y

m Transitive property:
XSPYPAYPSZI=>XZZ

@ Satisfying the above three
properties ensures:

m Never leading to a
comparison contradiction

Example: Total order & Partial order

@ 2D points with (x-coordinate, y-coordinate)
m Define relation >=" based on x-first, and y-next
s (4,3)>=(3,4), (3,5) >=(3,4)
m Total ordering

s What about defining relation >=" based on both x and y
= (4,3) >=(2,1), but (4,3) ??? (3,4)

m Partial ordering
¢+ Comparison not defined for some objects

@ We assume that we define a comparison that leads to total
ordering.

Priority Queue Sorting

@ We can use a priority queue to
sort a set of comparable
elements

1. Insert the elements one by one
with a series of insert operations

2. Remove the elements in sorted
order with a series of
removeMin operations

@ The running time of this sorting
method depends on the priority
gueue implementation

Algorithm PQO-Sort(S, C)
Input sequence S, comparator C for
the elements of §
Output sequence .S sorted in
increasing order according to C

P < priority queue with
comparator C

while —S.empty ()
e < S.front(); S.eraseFront()
Pinsert (e, D)

while —P.empty()
e < PremoveMin()
S.insertBack(e)

Sequence-based Priority Queue

@ Implementation with an
unsorted list

O—0—00—0B—0

@ Performance:

m insert takes O(1) time since
we can insert the item at the
beginning or end of the
sequence

m removeMin and min take
O(n) time since we have to
traverse the entire sequence
to find the smallest key

@ Implementation with a sorted

list

O—20—0C—10—=0

@ Performance:

m insert takes O(n) time since we
have to find the place where to
insert the item

m removeMin and min take O(1)
time, since the smallest key is at
the beginning

Selection-Sort

@ Selection-sort is the variation of PQ-sort where the priority queue
is implemented with an unsorted sequence

@ Running time of Selection-sort:

1. Inserting the elements into the priority queue with n insert operations
takes O(n) time

2. Removing the elements in sorted order from the priority queue with n
removeMin operations takes time proportional to

l+2+...+n

@ Selection-sort runs in O(n?) time

Selection-Sort Example

Sequence S Priority Queue P

Input: (7,4,8,2,5,3,9) ()
Phase 1

(a) (4,8,2,5,3,9) (7)

(b) (8,2,5,3,9) (7,4)

&) R (7,4,8,2,5,3,9)
Phase 2

(a) (2) (7,4,8,5,3,9)

(b) (2,3) (7,4,8,5,9)

(c) (2,3,4) (7,8,5,9)

(d) (2,3,4,5) (7,8,9)

(e) (2,3,4,5,7) (8,9)

(f) (2,3,4,5,7,8) (9)

(g) (2,3,4,5,7,89) ()

Insertion-Sort

®

@

®

1.

2.

Insertion-sort is the variation of PQ-sort where the priority
gueue is implemented with a sorted sequence

Running time of Insertion-sort:

Inserting the elements into the priority queue with » insert operations
takes time proportional to

l+2+...+n

Removing the elements in sorted order from the priority queue with a
series of n removeMin operations takes O(n) time

Insertion-sort runs in O(n?) time

10

Insertion-Sort Example

Input:

Phase 1

(a)

(b)
(c)
(d)
(e)
(f)
(8)

Phase 2
(a)
(b)

(8)

Sequence S
(714181215/319)

(4,8,2,5,3,9)
(8,2,5,3,9)
(2,5,3,9)
(5,3,9)
(3,9)

(9)

()

(2)
(2,3)

(213141517/819)

Priority queue P

()

(7)

(4,7)

(4,7,8)
(2,4,7,8)
(2,4,5,7,8)
(2,3,4,5,7,8)
(2,3,4,5,7,8,9)

(314151718/9)
(415171819)

0

11

NID

Comparator

Another design method

/N

12

How to define order for any object? (1)

@ Integer, float, double
m Quite clear on how to define “order”

@ Student: id, sex, department
m Slislessthan S2? In what sense?
@ Flight Passengers: airplane number, seat number, sex

m Plislessthan P2? In what sense?

@ How to design “comparison logic” in a programming language?

@ What design is good?

13

Design 1: Separate Design

@ Different Priority Queue based on the element type and the
manner of comparing elements

@ PQ_Int, PQ_Student, PQ_XXX PQ_student

@ Simple, but not general

@ Many copies of the same code comparison comparison

14

Design 2: Template and Overloading (2)

bool operator<(const Point2D& p, const Point2D& q) {
if (p.getX() == q.getX()) return p.getY() < q.getY();
else return p.getX() < q.getX();

PQ template

}

@ General enough for many situations

4 But,

= Cannot have multiple comparison
methods for the same type

s What about comparison based on y-
first, and x-next?

@ Even for the same data type, we want
to apply different comparison methods comparison: comparison:
A or B, depending on the situations “overload <" “overload <"

15

Design 3: Separating Comparator (1)

@ 2D points: Point2D p, Point 2: g

m Sometimes we want either of
X-based comparison, Y-based comparison

@ |dea

m Define a comparator class, e.g., “LeftRight” (x-based) and “BottomTop” (y-
based)

m Overload “()” operator

class LeftRight { // a left-right comparator
public:
bool operator()(const Point2D& p, const Point2D& q) const
{ return p.getX() < q.getX(); }
5

class BottomTop { // a bottom-top comparator
public:
bool operator()(const Point2D& p, const Point2D& q) const
{ return p.getY() < q.getY(); }
};

16

Design 3: Separating Comparator (2)

Point2D p(1.3, 5.7), q(2.5, 0.6);
LeftRight leftRight;

Bottom Top bottomTop;
printSmaller(p, q, leftRight);
printSmaller(p, q, bottomTop);

// two points

// a left-right comparator
// a bottom-top comparator
// outputs: (1.3, 5.7)

// outputs: (2.5, 0.6)

template <typename E, typename C>

void printSmaller(const E& p, const E& q, const C& isLess) {
cout << (isLess(p, q) ? p : q) << endl; // print the smaller of p and q

}

PQ<s

dent>

// element type and comparator

17

In C++

::sort(s.begin(), s.end());

(i=0 ; i<s.size();i++) {
r:cout << s[i] <<

.:cout <<

myless

::sort(s.begin(), s.end(), myless);

(i=0 ; i<s.size();i++) {
iicout << s[i] <<

18

NID

Heaps

/N

19

Recall Priority Queue ADT

@ A priority queue stores a
collection of entries

@ Typically, an entry is a pair
(key, value), where the key
indicates the priority

@ Main methods of the Priority
Queue ADT

insert(e) inserts an entry e

removeMin()
removes the entry with smallest
key

#® Additional methods

min()
returns, but does not remove, an
entry with smallest key

size(), empty()

@ Applications:

Standby flyers
Auctions
Stock market

20

Recall PQ Sorting

@ We use a priority queue

B Insert the elements with a series
of insert operations

B Remove the elements in sorted
order with a series of
removeMin operations

@ The running time depends on the
priority queue implementation:

= Unsorted sequence gives
selection-sort: O(n?) time

m Sorted sequence gives insertion-
sort: O(n?) time

@ Can we do better? Balancing the
above

Algorithm PQO-Sort(S, C)
Input sequence §, comparator C
for the elements of S
Output sequence S sorted 1n
increasing order according to C

P < priority queue with
comparator C

while —S.empty ()
e < S.front(); S.eraseFront()
Pinsert (e, D)

while —P.empty()
e < PremoveMin()
S.insertBack(e)

21

We will have these results soon ...

Sequence-based Heap-based
Operation | Unsorted List | Sorted List Operation | Time
size, empty o(1) 0(1) size, empty | O(1)
insert o(1) O(n) min | O(1)
min, removeMin O(n) 0(1) insert | O(logn)
removeMin | O(logn)

Key: Where were the “unnecessary repetitions” and “stupidity”?

22

Heap: Overview

@ A heap is a binary tree storing keys at its nodes and satisfying the following
properties:
m 1. Heap-order property

m 2. Complete binary tree property

@ The last node of a heap is the rightmost node of maximum depth

((ex)(@s) (4B 2H) (L@W)—— =%
node

23

1. Heap-order property

@ 1. Heap-Order: for every internal node v other than the root,
key(v) > key(parent(v))
m The keys encountered on a path from the root to a leaf T are nondecreasing

= A minimum key: always at the root

24

2. Complete binary tree property

@ Complete Binary Tree

m Roughly speaking, every level, except for the last level, is completely filled, and
all nodes in the last level are as far left as possible.

@ let h be the height of the heap
m fori=0,...,h—1,there are 2i nodes of depth i

m at depth & — 1, the internal nodes are to the left of the external nodes

25

Height of a Heap of n elements

@ Theorem: A heap storing n keys has height O(log n)
Proof: (we apply the complete binary tree property)

m Let /2 be the height of a heap storing n keys
Since there are 2i keys at depthi=0, ... , h — 1 and at least one key at depth A, we

haven>1+2+4+ ... +281 41
m Thus,n>2",ie,h<logn

depth keys
0 | mmmm e
1 2 e
h—1 2h 1
h | ===

26

Heaps and Priority Queues

@ We can use a heap to implement a priority queue

m We say “heap-based PQ implementation”
#® We store a (key, element) item at each internal node
@® We keep track of the position of the last node

m | am able to know who is the last node in O(1) time

m Easy

[(Z,Sue)]

(5, Pat) | [(6, Mark) |

[(9, 3ef) |

27

Insertion into a Heap

#® Method insert of the
priority queue ADT
corresponds to the
insertion of a key k to the
heap

@ The insertion algorithm
consists of three steps

s Find the insertion node 7 (the
new last node)
+ How? discussed later

m Storekatz

m Restore the heap-order
property (discussed next)

28

Upheap

&
&

After the insertion of a new key k&, the heap-order property may be violated

Algorithm upheap restores the heap-order property by swapping k along an
upward path from the insertion node

Upheap terminates when the key k reaches the root or a node whose parent
has a key smaller than or equal to k

Since a heap has height O(log n), upheap runs in O(log n) time

29

Insert: (2,T)

Removal from a Heap

® Method removeMin of the
priority queue ADT
corresponds to the removal
of the root key from the
heap

@ The removal algorithm
consists of three steps

m Replace the root key with the
key of the last node w

m Remove w

m Restore the heap-order
property (discussed next)

new last node

31

Downheap

N4

&

After replacing the root key with the key k of the last node, the heap-order
property may be violated

Algorithm downheap restores the heap-order property by swapping key k
along a downward path from the root (but which path?)

Upheap terminates when key k reaches a leaf or a node whose children have
keys greater than or equal to &k

Since a heap has height O(log n), downheap runs in O(log n) time

32

removeMin

33

Updating the Last Node

#® How can we find the insertion node (a new last node)?
m Theinsertion node can be found by traversing a path of O(log n) nodes
(1) Go up until a left child or the root is reached
m (2) If a left child is reached, go to the right child
(3) Go down left until a leaf is reached

@ Similar algorithm for updating the last node after a removal

34

Heap-Sort

@ Consider a priority queue
with n items implemented
by means of a heap

m the space used is O(n)

s methods insert and
removeMin take O(log n)
time

m methods size, empty, and min
take time O(1) time

Using a heap-based priority
gueue, we can sort a sequence
of n elements in O(n log n) time

m Construction: n insertions

m Actual sorting: n removals

The resulting algorithm is called
heap-sort

@ Heap-sort is much faster than
guadratic sorting algorithms,
such as insertion-sort apd
selection-sort

35

Sequence-based vs. Heap-based

Sequence-based

Heap-based

Operation

Time

size, empty

O(1)

min

1)

Operation | Unsorted List | Sorted List
size, empty Oo(1) o(1)
insert Oo(1) O(n)
min, removeMin O(n) o(1)

Insert

removeMin

O(
O(logn)
O(logn)

How do we remove “stupid repetition”?

Vector-based Heap Implementation

N4

&

We can represent a heap with n
keys by means of a vector of
length n + 1
For the node at rank i

m the left child is at rank 2i

m theright child is at rank 2i + 1

Links between nodes are not
explicitly stored

The cell of at rank 0 is not used

Operation insert corresponds to
inserting at rank n + 1

Operation removeMin
corresponds to removing at rank
n

37

Merging Two Heaps

@® We are given two heaps
and a key k

@® We create a new heap with
the root node storing k and
with the two heaps as
subtrees

@ We perform downheap to
restore the heap-order
property

38

Questions?

