Introduction

@ Priority Queue
m Data structure for storing a collection of prioritized elements

m Supporting arbitrary element insertion

m Supporting removal of elements in order of priority

Priority Queues

@ So far, we covered “position-based” data structures
m Stacks, queues, deques, lists, and even lists

m Store elements at specific positions (linear or hierarchical)
Insertion and removal based on “position” (linear or hierarchical)

m But, priority queue
¢ Insertion and removal: priority-based

@ Question: how to express the priority of an element
m Key (example: your student id)

Priority Queue ADT Total Order Relations (a topic of Discrete Math)
9 A priority queue stores a @ Additional methods @ Keys in a priority queue 9 Mathematical concept of
llecti f entri s mi i i .
FEee e e :thTJ(r)ns but does not remove, an can bhe a}‘:'bltral’zl Ob.JeCtS total order relation <
" ’ on wnicn an order Is .
@ Typically, an entry is a pair elntry with smallest key defined = Reflexive property:
(key, value), where the key = size(), empty() x<x
indicates the priority o o ® o o = Antisymmetric property:
Applications: Tvyo Q|st|nct entriesin a X<pAy<x = x=y
Main methods of the Priority " Stan(.:lby flyers priority queue can have = Transitive property:
Queue ADT = Auctions the same key property:
. insert(e) = Stock market XSYAYST=>XSZ
inserts an entry e (with an .
implicit associated key value) R 2 Total orderlng ® . .
m Comparison rule should Satlsfylr?g the above three
] removeMin() . be defined for ever‘y pair prOpeI’tIes ensures:
Lzr;oves the entry with smallest of keys = Never leading to 3

comparison contradiction

Example: Total order & Partial order Priority Queue Sorting

@ 2D points with (x-coordinate, y-coordinate) @ We can use a priority queue to
m Define relation “>=" based on x-first, and y-next Z:;ae;i: of comparable Algorithm PQ-Sor(S, C)
Input sequence S, comparator C for
= (4,3) >=(3,4), (3,5) >=(3,4) 1. Insert the elements one by one the?elemeczlnts of § P

with a series of insert operations .
P Output sequence S sorted in

2. Remove.the elements in sorted increasing order according to C
order with a series of

removeMin operations

Total ordering

P « priority queue with
comparator C

What about defining relation ‘>=‘ based on both x and y

n (4,3) >=(2,1), but (4,3) ??? (3,4) o) . while —S.empty ()
]) @ The running time of this sorting ¢ « S.front(); S.eraseFront()
= Partial ordering method depends on the priority Pinse;'t (e Qi o
+ Comparison not defined for some objects queue implementation while —~Pempty()
e < PremoveMin()
@ We assume that we define a comparison that leads to total S.insertBack(e)
ordering.
5
Sequence-based Priority Queue Selection-Sort
@ Implementation with an @ Implementation with a sorted @ Selection-sort is the variation of PQ-sort where the priority queue
unsorted list list is implemented with an unsorted sequence

@ Running time of Selection-sort:

e 6 9 9 o 0 @ 9 e 9 1. Inserting the elements into the priority queue with n insert operations

takes O(n) time

@ Performance: @ Performance: 2. Removing the elements in sorted order from the priority queue with n
= insert takes O(1) time since m insert takes O(n) time since we removeMin operations takes time proportional to
we can insert the item at the have to find the place where to
beginning or end of the insert the item 142+ . +n
sequence = removeMin and min take O(1)
= removeMin and min take time, since the smallest key is at
O(n) time since we have to the beginning @ Selection-sort runs in O(n?) time

traverse the entire sequence
to find the smallest key

Selection-Sort Example

Input:

Phase 1
(a)
(b)

(8)

Phase 2
(a)
(b)
(c)
(d)
(e)
(f)
(8)

Insertion-Sort Example

Input:

Phase 1

(a)

(b)
(c)
(d)
(e)
(f)
(8)

Phase 2
(a)
(b)

(8)

Sequence S
(7,4,8,2,5,3,9)

(4,8,2,5,3,9)
(82,5,3,9)

0

(2)

(2,3)

(2,3,4)
(23,4,5)
(2,3,4,5,7)
(2,3,4,57,8)
(2,3,4,57,8)9)

Sequence S
(7,4,8,2,5,3,9)

(4,8,2,5,3,9)
(82,5,3,9)
(253,9)
(539)

(39)

(9)

()

(2)
(23)

(2,3,4,57,8)9)

Priority Queue P

()

(7)
(7,4)

(7,4,8,2,5,3,9)

(7,4,8,5,3,9)
(7,4,8,5,9)
(7,8,5,9)
(7,8,9)
(89)

(9)

0

Priority queue P

()

(7)

(4,7)

(4,7,8)
(2,4,7,8)
(2,4,5,7,8)
(2,3,4,5,7,8)
(2,3,4,5,7,8)9)

(3,4,5,7,8,9)
(4,5,7,8,9)

0

11

Insertion-Sort

@ Insertion-sort is the variation of PQ-sort where the priority
queue is implemented with a sorted sequence

@ Running time of Insertion-sort:

1. Inserting the elements into the priority queue with n insert operations
takes time proportional to

142+ ...+n

2. Removing the elements in sorted order from the priority queue with a
series of n removeMin operations takes O(n) time

@ Insertion-sort runs in O(n?) time

10

Comparator

Another design method

12

How to define order for any object? (1)

@ Integer, float, double
m Quite clear on how to define “order”

@ Student: id, sex, department
m Slisless than S2? In what sense?
@ Flight Passengers: airplane number, seat number, sex

m Plislessthan P2? In what sense?

@ How to design “comparison logic” in a programming language?

9 What design is good?

13
Design 2: Template and Overloading (2)
bool operator<(const Point2D& p, const Point2D& q) {
if (p.getX() == q.getX()) return p.getY() < q.getY();
else return p.getX() < q.getX();
} PQ template
@ General enough for many situations
4 But,
= Cannot have multiple comparison
methods for the same type
< d >
= What about comparison based on y- PQ lent
first, and x-next?
@ Even for the same data type, we want
to apply different comparison methods comparison: comparison:
A or B, depending on the situations “overload <" “overload <*

15

Design 1: Separate Design

@ Different Priority Queue based on the element type and the
manner of comparing elements

@ PQ_Int, PQ_Student, PQ_XXX

PQ_student
@ Simple, but not general
@ Many copies of the same code ~ comparison comparison
14
Design 3: Separating Comparator (1)
@ 2D points: Point2D p, Point 2: q
= Sometimes we want either of
X-based comparison, Y-based comparison
@ Idea
m Define a comparator class, e.g., “LeftRight” (x-based) and “BottomTop” (y-
based)
m Overload “()” operator
class LeftRight { // a left-right comparator

ublic:
P bool operator()(const Point2D& p, const Point2D& q) const

{ return p.getX() < q.getX(); }
h
class BottomTop { // a bottom-top comparator
public:

bool operator()(const Point2D& p, const Point2D& q) const

{ return p.getY() < q.getY(); }

b
16

Design 3: Separating Comparator (2) In C++

Point2D p(1.3, 5.7), q(2.5, 0.6); // two points

LeftRight leftRight; // a left-right comparator
BottomTop bottomTop; // a bottom-top comparator
printSmaller(p, q, leftRight); // outputs: (1.3, 5.7)
printSmaller(p, q, bottomTop); // outputs: (2.5, 0.6)

::sort(s.begin(), s.end());
¢ =0 ; i<s.§ize();1++) {
template <typename E, typename C> // element type and comparator . = COULRSRS ITIISS
void printSmaller(const E& p, const E& q, const C& isLess) { ::cout <<
cout << (isLess(p, q) ? p : q) << endl; // print the smaller of p and q

::sort(s.begin(), s.end(), myless);

PQ<int> PQ<student>

(=0 ; i<s.size();i++) {
ricout << s[i] << 2

D@ e .

18
Recall Priority Queue ADT
@ A priority queue stores a @ Additional methods
collection of entries = min()
@ Typically, an entry is a pair returns, but does not remove, an
Hea S (key, value), where the key entry with smallest key
P indicates the priority = size(), empty()
4 Main methods of the Priority @ Applications:
Queue ADT = Standby flyers
= insert(e) inserts an entry e = Auctions
= removeMin() = Stock market

removes the entry with smallest
key

19 20

Recall PQ Sorting

@ We use a priority queue

B Insert the elements with a series
of insert operations

B Remove the elements in sorted
order with a series of
removeMin operations

@ The running time depends on the
priority queue implementation:

= Unsorted sequence gives
selection-sort: O(n?) time

= Sorted sequence gives insertion-
sort: O(n?) time

@ Can we do better? Balancing the
above

Heap: Overview

@ Aheap is a binary tree storing keys at its nodes and satisfying the following

properties:
= 1. Heap-order property

= 2. Complete binary tree property

Algorithm PQ-Sort(S, C)

Input sequence .S, comparator C

for the elements of §

Output sequence S sorted in

increasing order according to C

P « priority queue with
comparator C

while —S.empty ()
e < S.front(); S.eraseFront()
Pinsert (e, D)

while —P.empty()
e < PremoveMin()
S.insertBack(e)

@ The last node of a heap is the rightmost node of maximum depth

21

We will have these results soon ...

Sequence-based Heap-based
Operation | Unsorted List | Sorted List Operation | Time
size, empty o(1) o(1) size, empty | O(1)
insert o(1) O(n) min | O(1)
min, removeMin O(n) o(1) insert | O(logn)
removeMin | O(logn)

Key: Where were the “unnecessary repetitions” and “stupidity”?

1. Heap-order property

@ 1. Heap-Order: for every internal node v other than the root,
key(v) > key(parent(v))

= The keys encountered on a path from the root to a leaf T are nondecreasing

= A minimum key: always at the root

22

24

2. Complete binary tree property

@ Complete Binary Tree

= Roughly speaking, every level, except for the last level, is completely filled, and

all nodes in the last level are as far left as possible.

@ let h be the height of the heap
m fori=0,..., h—1,there are 2/ nodes of depth i

= atdepth & — 1, the internal nodes are to the left of the external nodes

Heaps and Priority Queues

4 We can use a heap to implement a priority queue

m We say “heap-based PQ implementation”
@ We store a (key, element) item at each internal node
@ We keep track of the position of the last node

= | am able to know who is the last node in O(1) time

m Easy

Height of a Heap of n elements

@ Theorem: A heap storing n keys has height O(log n)
Proof: (we apply the complete binary tree property)
m Let & be the height of a heap storing n keys

= Since there are 27 keys at depthi=0, ... , & — 1 and at least one key at depth &, we
haven>1+2+4+.. +2F1 4]

m Thus,n>2" i.e,h<logn

depth keys
0 | mmm e
1 2 mmmmm e
R
h 1 o———--
25 26

Insertion into a Heap

@ Method insert of the
priority queue ADT
corresponds to the
insertion of a key k to the
heap

@ The insertion algorithm
consists of three steps

m Find the insertion node z (the
new last node)
+ How? discussed later

m Storekatz

m Restore the heap-order
property (discussed next)

27

28

I (2, T
Upheap nsert: (2,T)

@ After the insertion of a new key k, the heap-order property may be violated

@ Algorithm upheap restores the heap-order property by swapping k along an
upward path from the insertion node

@ Upheap terminates when the key k reaches the root or a node whose parent
has a key smaller than or equal to k&

@ Since a heap has height O(log n), upheap runs in O(log n) time

29

Removal from a Heap Downheap

@ After replacing the root key with the key k of the last node, the heap-order
property may be violated

@ Algorithm downheap restores the heap-order property by swapping key k
along a downward path from the root (but which path?)

@ Upheap terminates when key k reaches a leaf or a node whose children have
keys greater than or equal to &k

@ Since a heap has height O(log n), downheap runs in O(log n) time

4 Method removeMin of the
priority queue ADT
corresponds to the removal
of the root key from the
heap

@ The removal algorithm
consists of three steps
m Replace the root key with the
key of the last node w
= Remove w
m Restore the heap-order
property (discussed next) new last node

31 32

removeMin

Heap-Sort

@ Consider a priority queue
with n items implemented
by means of a heap

m the space used is O(n)

= methods insert and
removeMin take O(log n)
time

= methods size, empty, and min
take time O(1) time

33

@ Using a heap-based priority
gueue, we can sort a sequence
of n elements in O(n log n) time

m Construction: n insertions
m Actual sorting: n removals

@ The resulting algorithm is called
heap-sort

@ Heap-sort is much faster than
guadratic sorting algorithms,
such as insertion-sort apd
selection-sort

35

Updating the Last Node

@ How can we find the insertion node (a new last node)?

= The insertion node can be found by traversing a path of O(log n) nodes

= (1) Go up until a left child or the root is reached
= (2) If a left child is reached, go to the right child

= (3) Go down left until a leaf is reached

@ Similar algorithm for updating the last node after a removal

Sequence-based vs. Heap-based

Sequence-based Heap-based
Operation | Unsorted List | Sorted List Operation | Time
size, empty o(1) 0o(1) size, empty | O(1)
insert o(1) O(n) min | O(1)
min, removeMin O(n) o(1) insert | O(logn)
removeMin | O(logn)

How do we remove “stupid repetition”?

Vector-based Heap Implementation

@ We can represent a heap with n
keys by means of a vector of 1
lengthn + 1

@ For the node at rank i

m the left child is at rank 2
m the right child is at rank 27 + 1

@ Links between nodes are not
explicitly stored

@ The cell of at rank 0 is not used

@ Operation insert corresponds to

inserting at rank n + 1 2 5 6 9 7
@ Operation removeMin
. o 1 2
corresponds to removing at rank
n

37

Questions?

Merging Two Heaps

@ We are given two heaps
and a key k

@ We create a new heap with
the root node storing k and
with the two heaps as
subtrees

9 We perform downheap to

restore the heap-order
property

38

