Priority Queues

Priority Queue ADT

- A priority queue stores a collection of entries
- Typically, an entry is a pair (key, value), where the key indicates the priority
- Main methods of the Priority Queue ADT
- insert(e)
inserts an entry e (with an implicit associated key value)
- removeMin()
removes the entry with smallest key
- Additional methods
- min()
returns, but does not remove, an entry with smallest key
- size(), empty()
- Applications:
- Standby flyers
- Auctions
- Stock market

Introduction

- Priority Queue
- Data structure for storing a collection of prioritized elements
- Supporting arbitrary element insertion
- Supporting removal of elements in order of priority
* So far, we covered "position-based" data structures
- Stacks, queues, deques, lists, and even lists
- Store elements at specific positions (linear or hierarchical)
- Insertion and removal based on "position" (linear or hierarchical)
- But, priority queue
- Insertion and removal: priority-based
\diamond Question: how to express the priority of an element
- Key (example: your student id)

Total Order Relations (a topic of Discrete Math)

* Keys in a priority queue can be arbitrary objects on which an order is defined
\diamond Two distinct entries in a priority queue can have the same key
- Total ordering
- Comparison rule should be defined for every pair of keys
- Mathematical concept of total order relation \leq
- Reflexive property: $\boldsymbol{x} \leq \boldsymbol{x}$
- Antisymmetric property: $\boldsymbol{x} \leq \boldsymbol{y} \wedge \boldsymbol{y} \leq \boldsymbol{x} \Rightarrow \boldsymbol{x}=\boldsymbol{y}$
- Transitive property: $x \leq y \wedge y \leq z \Rightarrow x \leq z$
- Satisfying the above three properties ensures:
- Never leading to a comparison contradiction

Example: Total order \& Partial order

- 2D points with (x-coordinate, y-coordinate)
- Define relation '>=' based on x-first, and y-next
- $(4,3)>=(3,4),(3,5)>=(3,4)$
- Total ordering
- What about defining relation '>=' based on both x and y
- $(4,3)>=(2,1)$, but $(4,3)$??? $(3,4)$
- Partial ordering
- Comparison not defined for some objects
* We assume that we define a comparison that leads to total ordering.

Sequence-based Priority Queue

- Implementation with an unsorted list

- Performance:
- insert takes $\boldsymbol{O}(1)$ time since we can insert the item at the beginning or end of the sequence
- removeMin and min take $\boldsymbol{O}(\boldsymbol{n})$ time since we have to traverse the entire sequence to find the smallest key
- Implementation with a sorted list

- Performance:
- insert takes $\boldsymbol{O}(\boldsymbol{n})$ time since we have to find the place where to insert the item
- removeMin and min take $\boldsymbol{O}(1)$ time, since the smallest key is at the beginning

Priority Queue Sorting

- We can use a priority queue to sort a set of comparable elements

1. Insert the elements one by one with a series of insert operations
2. Remove the elements in sorted order with a series of removeMin operations

- The running time of this sorting method depends on the priority queue implementation

```
Algorithm PQ-Sort(S,C)
    Input sequence S, comparator C for
    the elements of S
    Output sequence}S\mathrm{ sorted in
    increasing order according to C
    P}\leftarrow\mathrm{ priority queue with
        comparator C
    while -S.empty ()
        e\leftarrowS.front(); S.eraseFront()
        P.insert (e, \varnothing)
    while}\neg\mathrm{ P.empty()
    e\leftarrowP.removeMin()
    S.insertBack(e)
```


Selection-Sort

\diamond Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted sequence

- Running time of Selection-sort:

1. Inserting the elements into the priority queue with \boldsymbol{n} insert operations takes $\boldsymbol{O}(\boldsymbol{n})$ time
2. Removing the elements in sorted order from the priority queue with \boldsymbol{n} removeMin operations takes time proportional to

$$
1+2+\ldots+\boldsymbol{n}
$$

\diamond Selection-sort runs in $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ time

Selection-Sort Example

	Sequence S $(7,4,8,2,5,3,9)$	Priority Queue P Input:
Phase 1		
(a)	$(4,8,2,5,3,9)$	(7)
(b)	$(8,2,5,3,9)$	$(7,4)$
..	.\quad.	$(7,4,8,2,5,3,9)$
(g)	()	
		$(7,4,8,5,3,9)$
Phase 2		$(7,4,8,5,9)$
(a)	(2)	$(7,8,5,9)$
(b)	$(2,3)$	$(7,8,9)$
(c)	$(2,3,4)$	$(8,9)$
(d)	$(2,3,4,5)$	(9)
(e)	$(2,3,4,5,7)$	(1)
(f)	$(2,3,4,5,7,8)$	
(g)	$(2,3,4,5,7,8,9)$	

* Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted sequence
- Running time of Insertion-sort:

1. Inserting the elements into the priority queue with \boldsymbol{n} insert operations takes time proportional to

$$
1+2+\ldots+n
$$

2. Removing the elements in sorted order from the priority queue with a series of \boldsymbol{n} removeMin operations takes $\boldsymbol{O}(\boldsymbol{n})$ time

* Insertion-sort runs in $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ time

Insertion-Sort Example

	Sequence S $(7,4,8,2,5,3,9)$	Priority queue Input:
Phase 1		
(a)	$(4,8,2,5,3,9)$	(7)
(b)	$(8,2,5,3,9)$	$(4,7)$
(c)	$(2,5,3,9)$	$(4,7,8)$
(d)	$(5,3,9)$	$(2,4,7,8)$
(e)	$(3,9)$	$(2,4,5,7,8)$
(f)	(9)	$(2,3,4,5,7,8)$
(g)	()	$(2,3,4,5,7,8,9)$
Phase 2	(2)	$(3,4,5,7,8,9)$
(a)	$(2,3)$	$(4,5,7,8,9)$
(b)	.	.
.	$(2,3,4,5,7,8,9)$	()

How to define order for any object? (1)

- Integer, float, double
- Quite clear on how to define "order"

४ Student: id, sex, department

- S1 is less than S2? In what sense?
\diamond Flight Passengers: airplane number, seat number, sex
- P1 is less than P2? In what sense?
* How to design "comparison logic" in a programming language?

What design is good?

Design 1: Separate Design

- Different Priority Queue based on the element type and the manner of comparing elements
- PQ_Int, PQ_Student, PQ_XXX
- Simple, but not general
- Many copies of the same code

PQ_student s1 s2 s3 stampent

Design 2: Template and Overloading (2)

Recall Priority Queue ADT

- A priority queue stores a collection of entries
- Typically, an entry is a pair (key, value), where the key indicates the priority
- Main methods of the Priority Queue ADT
- insert(e) inserts an entry e
- removeMin()
removes the entry with smallest key
- Additional methods
- $\min ()$ returns, but does not remove, an entry with smallest key
- size(), empty()
- Applications:
- Standby flyers
- Auctions
- Stock market

Recall PQ Sorting

- We use a priority queue
- Insert the elements with a series of insert operations
- Remove the elements in sorted order with a series of removeMin operations
* The running time depends on the priority queue implementation:
- Unsorted sequence gives selection-sort: $O\left(n^{2}\right)$ time
- Sorted sequence gives insertionsort: $O\left(n^{2}\right)$ time
* Can we do better? Balancing the above

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C
for the elements of S
Output sequence S sorted in increasing order according to C
$P \leftarrow$ priority queue with
comparator \boldsymbol{C}
while - S.empty ()
$e \leftarrow S$. front(); S.eraseFront()
Pinsert (e, \varnothing)
while \neg P.empty ()
$e \leftarrow$ P.removeMin()
S.insertBack(e)

Sequence-based			Heap-based	
Operation	Unsorted List	Sorted List	Operation	Time
size, empty	$O(1)$	$O(1)$	size, empty	$O(1)$
insert	$O(1)$	$O(n)$	min	$O(1)$
min, removeMin	$O(n)$	$O(1)$	insert	$O(\log n)$
			removeMin	$O(\log n)$

Key: Where were the "unnecessary repetitions" and "stupidity"?

Heap: Overview

- A heap is a binary tree storing keys at its nodes and satisfying the following properties:
- 1. Heap-order property
- 2. Complete binary tree property
* The last node of a heap is the rightmost node of maximum depth

2. Complete binary tree property

- Complete Binary Tree
- Roughly speaking, every level, except for the last level, is completely filled, and all nodes in the last level are as far left as possible.
- let \boldsymbol{h} be the height of the heap
- for $\boldsymbol{i}=0, \ldots, \boldsymbol{h}-1$, there are 2^{i} nodes of depth \boldsymbol{i}
- at depth $\boldsymbol{h}-1$, the internal nodes are to the left of the external nodes

Heaps and Priority Queues

\star We can use a heap to implement a priority queue

- We say "heap-based PQ implementation"
\diamond We store a (key, element) item at each internal node
\diamond We keep track of the position of the last node
- I am able to know who is the last node in O(1) time
- Easy

Height of a Heap of n elements

- Theorem: A heap storing \boldsymbol{n} keys has height $\boldsymbol{O}(\log \boldsymbol{n})$ Proof: (we apply the complete binary tree property)
- Let \boldsymbol{h} be the height of a heap storing \boldsymbol{n} keys
- Since there are 2^{i} keys at depth $\boldsymbol{i}=0, \ldots, \boldsymbol{h}-1$ and at least one key at depth \boldsymbol{h}, we have $\boldsymbol{n} \geq 1+2+4+\ldots+2^{h-1}+$
- Thus, $\boldsymbol{n} \geq 2^{\boldsymbol{h}}$, i.e., $\boldsymbol{n} \leq \log \boldsymbol{n}$

Insertion into a Heap

- Method insert of the priority queue ADT corresponds to the insertion of a key \boldsymbol{k} to the heap

insertion node
- The insertion algorithm consists of three steps
- Find the insertion node \boldsymbol{z} (the new last node)
- How? discussed later
- Store \boldsymbol{k} at \boldsymbol{z}
- Restore the heap-order property (discussed next)

Upheap

* After the insertion of a new key \boldsymbol{k}, the heap-order property may be violated
- Algorithm upheap restores the heap-order property by swapping \boldsymbol{k} along an upward path from the insertion node
- Upheap terminates when the key \boldsymbol{k} reaches the root or a node whose parent has a key smaller than or equal to k
- Since a heap has height $\boldsymbol{O}(\log \boldsymbol{n})$, upheap runs in $\boldsymbol{O}(\log \boldsymbol{n})$ time

Removal from a Heap

- Method removeMin of the priority queue ADT corresponds to the removal of the root key from the heap
- The removal algorithm consists of three steps
- Replace the root key with the key of the last node \boldsymbol{w}
- Remove \boldsymbol{w}
- Restore the heap-order property (discussed next)

new last node

Insert: $(2, T)$

Downheap

* After replacing the root key with the key \boldsymbol{k} of the last node, the heap-order property may be violated
- Algorithm downheap restores the heap-order property by swapping key \boldsymbol{k} along a downward path from the root (but which path?)
- Upheap terminates when key \boldsymbol{k} reaches a leaf or a node whose children have keys greater than or equal to \boldsymbol{k}
- Since a heap has height $\boldsymbol{O}(\log \boldsymbol{n})$, downheap runs in $\boldsymbol{O}(\log \boldsymbol{n})$ time

(a)

(d)
(d)
(e)

(d)

(g)

(h)

33

Updating the Last Node

- How can we find the insertion node (a new last node)?
- The insertion node can be found by traversing a path of $\boldsymbol{O}(\log \boldsymbol{n})$ nodes
- (1) Go up until a left child or the root is reached
- (2) If a left child is reached, go to the right child
- (3) Go down left until a leaf is reached
- Similar algorithm for updating the last node after a removal

Heap-Sort

* Consider a priority queue with \boldsymbol{n} items implemented by means of a heap
- the space used is $\boldsymbol{O}(\boldsymbol{n})$
- methods insert and removeMin take $\boldsymbol{O}(\log \boldsymbol{n})$ time
- methods size, empty, and min take time $\boldsymbol{O}(1)$ time
- Using a heap-based priority queue, we can sort a sequence of \boldsymbol{n} elements in $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ time
- Construction: n insertions
- Actual sorting: n removals
- The resulting algorithm is called heap-sort
- Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort a贝d selection-sort

Vector-based Heap Implementation

- We can represent a heap with \boldsymbol{n} keys by means of a vector of length $\boldsymbol{n}+1$
- For the node at rank i
- the left child is at rank $2 \boldsymbol{i}$
- the right child is at rank $2 \boldsymbol{i}+1$
- Links between nodes are not explicitly stored

- The cell of at rank 0 is not used
- Operation insert corresponds to inserting at rank $\boldsymbol{n}+1$
- Operation removeMin corresponds to removing at rank

Merging Two Heaps

\diamond We are given two heaps and a key \boldsymbol{k}
\star We create a new heap with the root node storing \boldsymbol{k} and with the two heaps as subtrees

* We perform downheap to restore the heap-order property

Questions?

