
Priority Queues
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Introduction
Priority Queue
n Data structure for storing a collection of prioritized elements
n Supporting arbitrary element insertion
n Supporting removal of elements in order of priority

So far, we covered “position-based” data structures
n Stacks, queues, deques, lists, and even lists
n Store elements at specific positions (linear or hierarchical)
n Insertion and removal based on “position” (linear or hierarchical)
n But, priority queue

w Insertion and removal: priority-based

Question: how to express the priority of an element
n Key (example: your student id)
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Priority Queue ADT
A priority queue stores a 
collection of entries

Typically, an entry is a pair
(key, value), where the key 
indicates the priority

Main methods of the Priority 
Queue ADT
n insert(e)

inserts an entry e (with an 
implicit associated key value)

n removeMin()
removes the entry with smallest 
key

Additional methods
n min()

returns, but does not remove, an 
entry with smallest key

n size(), empty()

Applications:
n Standby flyers
n Auctions
n Stock market
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Total Order Relations (a topic of Discrete Math)

Keys in a priority queue 
can be arbitrary objects 
on which an order is 
defined

Two distinct entries in a 
priority queue can have 
the same key

Total ordering
n Comparison rule should 

be defined for every pair 
of keys

Mathematical concept of 
total order relation £
n Reflexive property:

x £ x
n Antisymmetric property:

x £ y Ù y £ x Þ x = y
n Transitive property:

x £ y Ù y £ z Þ x £ z

Satisfying the above three 
properties ensures:
n Never leading to a 

comparison contradiction
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Example: Total order & Partial order
2D points with (x-coordinate, y-coordinate)
n Define relation ‘>=’ based on x-first, and y-next
n (4,3) >= (3,4), (3,5) >= (3,4)
n Total ordering

n What about defining relation ‘>=‘ based on both x and y
n (4,3) >=(2,1), but (4,3) ??? (3,4)
n Partial ordering

w Comparison not defined for some objects

We assume that we define a comparison that leads to total 
ordering. 
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Priority Queue Sorting
We can use a priority queue to 
sort a set of comparable 
elements

1. Insert the elements one by one 
with a series of insert operations

2. Remove the elements in sorted 
order with a series of 
removeMin operations

The running time of this sorting 
method depends on the priority 
queue implementation
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Algorithm PQ-Sort(S, C)
Input sequence S, comparator C for 
the elements of S
Output sequence S sorted  in 
increasing order according to C
P ¬ priority queue with 

comparator C
while ¬S.empty ()

e ¬ S.front(); S.eraseFront()
P.insert (e, Æ)

while ¬P.empty()
e ¬ P.removeMin()
S.insertBack(e)

Sequence-based Priority Queue
Implementation with an 
unsorted list

Performance:
n insert takes O(1) time since 

we can insert the item at the 
beginning or end of the 
sequence

n removeMin and min take 
O(n) time since we have to 
traverse the entire sequence 
to find the smallest key 

Implementation with a sorted 
list

Performance:
n insert takes O(n) time since we 

have to find the place where to 
insert the item

n removeMin and min take O(1)
time, since the smallest key is at 
the beginning
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Selection-Sort
Selection-sort is the variation of PQ-sort where the priority queue 
is implemented with an unsorted sequence
Running time of Selection-sort:

1. Inserting the elements into the priority queue with n insert operations 
takes O(n) time

2. Removing the elements in sorted order from the priority queue with n
removeMin operations takes time proportional to

1 + 2 + …+ n

Selection-sort runs in O(n2) time 
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Selection-Sort Example
Sequence S Priority Queue P

Input: (7,4,8,2,5,3,9) ()

Phase 1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (7,4)
.. .. ..
(g) () (7,4,8,2,5,3,9)

Phase 2
(a) (2) (7,4,8,5,3,9)
(b) (2,3) (7,4,8,5,9)
(c) (2,3,4) (7,8,5,9)
(d) (2,3,4,5) (7,8,9)
(e) (2,3,4,5,7) (8,9)
(f) (2,3,4,5,7,8) (9)
(g) (2,3,4,5,7,8,9) ()
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Insertion-Sort
Insertion-sort is the variation of PQ-sort where the priority 
queue is implemented with a sorted sequence
Running time of Insertion-sort:

1. Inserting the elements into the priority queue with n insert operations 
takes time proportional to

1 + 2 + …+ n
2. Removing the elements in sorted order from the priority queue with  a 

series of n removeMin operations takes O(n) time

Insertion-sort runs in O(n2) time 
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Insertion-Sort Example
Sequence S Priority queue P

Input: (7,4,8,2,5,3,9) ()

Phase 1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (4,7)
(c) (2,5,3,9) (4,7,8)
(d) (5,3,9) (2,4,7,8)
(e) (3,9) (2,4,5,7,8)
(f) (9) (2,3,4,5,7,8)
(g) () (2,3,4,5,7,8,9)

Phase 2
(a) (2) (3,4,5,7,8,9)
(b) (2,3) (4,5,7,8,9)
.. .. ..
(g) (2,3,4,5,7,8,9) ()

11

Comparator

Another design method
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How to define order for any object? (1)
Integer, float, double
n Quite clear on how to define “order”

Student: id, sex, department
n S1 is less than S2? In what sense?

Flight Passengers: airplane number, seat number, sex
n P1 is less than P2? In what sense?

How to design “comparison logic” in a programming language?

What design is good?
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Design 1: Separate Design 
Different Priority Queue based on the element type and the 
manner of comparing elements

PQ_Int, PQ_Student, PQ_XXX

Simple, but not general

Many copies of the same code 

14

PQ_int PQ_student

i1 i2
i3

s1 s2
s3

integer 
comparison

student 
comparison

Design 2: Template and Overloading (2)

General enough for many situations
But,
n Cannot have multiple comparison 

methods for the same type
n What about comparison based on y-

first, and x-next?

Even for the same data type, we want 
to apply different comparison methods 
A or B, depending on the situations
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PQ<int> PQ<student>
i1 i2
i3

s1 s2
s3

integer 
comparison:
“overload <“

student 
comparison:
“overload <“

PQ template

<

Design 3: Separating Comparator (1)
2D points: Point2D p, Point 2: q
n Sometimes we want either of 

X-based comparison, Y-based comparison

Idea 
n Define a comparator class, e.g., “LeftRight” (x-based) and “BottomTop” (y-

based)
n Overload “()” operator
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Design 3: Separating Comparator (2)
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PQ<int> PQ<student>
i1 i2
i3

s1 s2
s3

c1 c2 c’1 c’2

In C++
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Recall Priority Queue ADT
A priority queue stores a 
collection of entries
Typically, an entry is a pair
(key, value), where the key 
indicates the priority
Main methods of the Priority 
Queue ADT
n insert(e) inserts an entry e 
n removeMin()

removes the entry with smallest 
key

Additional methods
n min()

returns, but does not remove, an 
entry with smallest key

n size(), empty()
Applications:
n Standby flyers
n Auctions
n Stock market
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Recall PQ Sorting
We use a priority queue
n Insert the elements with a series 

of insert operations
n Remove the elements in sorted 

order with a series of 
removeMin operations

The running time depends on the 
priority queue implementation:
n Unsorted sequence gives 

selection-sort: O(n2) time
n Sorted sequence gives insertion-

sort: O(n2) time

Can we do better? Balancing the 
above
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Algorithm PQ-Sort(S, C)
Input sequence S, comparator C
for the elements of S
Output sequence S sorted  in 
increasing order according to C
P ¬ priority queue with 

comparator C
while ¬S.empty ()

e ¬ S.front(); S.eraseFront()
P.insert (e, Æ)

while ¬P.empty()
e ¬ P.removeMin()
S.insertBack(e)

We will have these results soon …
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Sequence-based Heap-based

Key: Where were the “unnecessary repetitions” and “stupidity”?

Heap: Overview
A heap is a binary tree storing keys at its nodes and satisfying the following 
properties:
n 1. Heap-order property
n 2. Complete binary tree property

The last node of a heap is the rightmost node of maximum depth
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last 
node

1. Heap-order property
1. Heap-Order: for every internal node v other than the root,
key(v) ³ key(parent(v))
n The keys encountered on a path from the root to a leaf T are nondecreasing
n A minimum key: always at the root
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2. Complete binary tree property
Complete Binary Tree
n Roughly speaking, every level, except for the last level, is completely filled, and 

all nodes in the last level are as far left as possible.

let h be the height of the heap
n for i = 0, … , h - 1, there are 2i nodes of depth i
n at depth h - 1, the internal nodes are to the left of the external nodes
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Height of a Heap of n elements
Theorem: A heap storing n keys has height O(log n)
Proof: (we apply the complete binary tree property)
n Let h be the height of a heap storing n keys
n Since there are 2i keys at depth i = 0, … , h - 1 and at least one key at depth h, we 

have n ³ 1 + 2 + 4 + … + 2h-1 + 1
n Thus, n ³ 2h , i.e., h £ log n
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Heaps and Priority Queues
We can use a heap to implement a priority queue
n We say “heap-based PQ implementation”

We store a (key, element) item at each internal node
We keep track of the position of the last node
n I am able to know who is the last node in O(1) time
n Easy
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(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)

Insertion into a Heap
Method insert of the 
priority queue ADT 
corresponds to the 
insertion of a key k to the 
heap

The insertion algorithm 
consists of three steps
n Find the insertion node z (the 

new last node)
w How? discussed later

n Store k at z
n Restore the heap-order 

property (discussed next)
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Upheap
After the insertion of a new key k, the heap-order property may be violated
Algorithm upheap restores the heap-order property by swapping k along an 
upward path from the insertion node
Upheap terminates when the key k reaches the root or a node whose parent 
has a key smaller than or equal to k
Since a heap has height O(log n), upheap runs in O(log n) time
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Insert: (2,T)

Removal from a Heap
Method removeMin of the 
priority queue ADT 
corresponds to the removal 
of the root key from the 
heap

The removal algorithm 
consists of three steps
n Replace the root key with the 

key of the last node w
n Remove w
n Restore the heap-order 

property (discussed next)
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Downheap
After replacing the root key with the key k of the last node, the heap-order 
property may be violated
Algorithm downheap restores the heap-order property by swapping key k
along a downward path from the root (but which path?)
Upheap terminates when key k reaches a leaf or a node whose children have 
keys greater than or equal to k
Since a heap has height O(log n), downheap runs in O(log n) time
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removeMin Updating the Last Node
How can we find the insertion node (a new last node)?
n The insertion node can be found by traversing a path of O(log n) nodes
n (1) Go up until a left child or the root is reached
n (2) If a left child is reached, go to the right child
n (3) Go down left until a leaf is reached

Similar algorithm for updating the last node after a removal
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Heap-Sort
Consider a priority queue 
with n items implemented 
by means of a heap
n the space used is O(n)
n methods insert and 

removeMin take O(log n) 
time

n methods size, empty, and min
take time O(1) time

Using a heap-based priority 
queue, we can sort a sequence 
of n elements in O(n log n) time
n Construction: n insertions
n Actual sorting: n removals

The resulting algorithm is called 
heap-sort
Heap-sort is much faster than 
quadratic sorting algorithms, 
such as insertion-sort and 
selection-sort
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Sequence-based vs. Heap-based
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Sequence-based Heap-based

How do we remove “stupid repetition”?



Vector-based Heap Implementation
We can represent a heap with n
keys by means of a vector of 
length n + 1
For the node at rank i
n the left child is at rank 2i
n the right child is at rank 2i + 1

Links between nodes are not 
explicitly stored
The cell of at rank 0 is not used
Operation insert corresponds to 
inserting at rank n + 1
Operation removeMin
corresponds to removing at rank 
n
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Merging Two Heaps
We are given two heaps 
and a key k
We create a new heap with 
the root node storing k and 
with the two heaps as 
subtrees
We perform downheap to 
restore the heap-order 
property 
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Questions?


