
Priority Queues

1

Introduction
Priority Queue
n Data structure for storing a collection of prioritized elements
n Supporting arbitrary element insertion
n Supporting removal of elements in order of priority

So far, we covered “position-based” data structures
n Stacks, queues, deques, lists, and even lists
n Store elements at specific positions (linear or hierarchical)
n Insertion and removal based on “position” (linear or hierarchical)
n But, priority queue

w Insertion and removal: priority-based

Question: how to express the priority of an element
n Key (example: your student id)

2

Priority Queue ADT
A priority queue stores a
collection of entries

Typically, an entry is a pair
(key, value), where the key
indicates the priority

Main methods of the Priority
Queue ADT
n insert(e)

inserts an entry e (with an
implicit associated key value)

n removeMin()
removes the entry with smallest
key

Additional methods
n min()

returns, but does not remove, an
entry with smallest key

n size(), empty()

Applications:
n Standby flyers
n Auctions
n Stock market

3

Total Order Relations (a topic of Discrete Math)

Keys in a priority queue
can be arbitrary objects
on which an order is
defined

Two distinct entries in a
priority queue can have
the same key

Total ordering
n Comparison rule should

be defined for every pair
of keys

Mathematical concept of
total order relation £
n Reflexive property:

x £ x
n Antisymmetric property:

x £ y Ù y £ x Þ x = y
n Transitive property:

x £ y Ù y £ z Þ x £ z

Satisfying the above three
properties ensures:
n Never leading to a

comparison contradiction
4

Example: Total order & Partial order
2D points with (x-coordinate, y-coordinate)
n Define relation ‘>=’ based on x-first, and y-next
n (4,3) >= (3,4), (3,5) >= (3,4)
n Total ordering

n What about defining relation ‘>=‘ based on both x and y
n (4,3) >=(2,1), but (4,3) ??? (3,4)
n Partial ordering

w Comparison not defined for some objects

We assume that we define a comparison that leads to total
ordering.

5

Priority Queue Sorting
We can use a priority queue to
sort a set of comparable
elements

1. Insert the elements one by one
with a series of insert operations

2. Remove the elements in sorted
order with a series of
removeMin operations

The running time of this sorting
method depends on the priority
queue implementation

6

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C for
the elements of S
Output sequence S sorted in
increasing order according to C
P ¬ priority queue with

comparator C
while ¬S.empty ()

e ¬ S.front(); S.eraseFront()
P.insert (e, Æ)

while ¬P.empty()
e ¬ P.removeMin()
S.insertBack(e)

Sequence-based Priority Queue
Implementation with an
unsorted list

Performance:
n insert takes O(1) time since

we can insert the item at the
beginning or end of the
sequence

n removeMin and min take
O(n) time since we have to
traverse the entire sequence
to find the smallest key

Implementation with a sorted
list

Performance:
n insert takes O(n) time since we

have to find the place where to
insert the item

n removeMin and min take O(1)
time, since the smallest key is at
the beginning

7

4 5 2 3 1 1 2 3 4 5

Selection-Sort
Selection-sort is the variation of PQ-sort where the priority queue
is implemented with an unsorted sequence
Running time of Selection-sort:

1. Inserting the elements into the priority queue with n insert operations
takes O(n) time

2. Removing the elements in sorted order from the priority queue with n
removeMin operations takes time proportional to

1 + 2 + …+ n

Selection-sort runs in O(n2) time

8

Selection-Sort Example
Sequence S Priority Queue P

Input: (7,4,8,2,5,3,9) ()

Phase 1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (7,4)
..
(g) () (7,4,8,2,5,3,9)

Phase 2
(a) (2) (7,4,8,5,3,9)
(b) (2,3) (7,4,8,5,9)
(c) (2,3,4) (7,8,5,9)
(d) (2,3,4,5) (7,8,9)
(e) (2,3,4,5,7) (8,9)
(f) (2,3,4,5,7,8) (9)
(g) (2,3,4,5,7,8,9) ()

9

Insertion-Sort
Insertion-sort is the variation of PQ-sort where the priority
queue is implemented with a sorted sequence
Running time of Insertion-sort:

1. Inserting the elements into the priority queue with n insert operations
takes time proportional to

1 + 2 + …+ n
2. Removing the elements in sorted order from the priority queue with a

series of n removeMin operations takes O(n) time

Insertion-sort runs in O(n2) time

10

Insertion-Sort Example
Sequence S Priority queue P

Input: (7,4,8,2,5,3,9) ()

Phase 1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (4,7)
(c) (2,5,3,9) (4,7,8)
(d) (5,3,9) (2,4,7,8)
(e) (3,9) (2,4,5,7,8)
(f) (9) (2,3,4,5,7,8)
(g) () (2,3,4,5,7,8,9)

Phase 2
(a) (2) (3,4,5,7,8,9)
(b) (2,3) (4,5,7,8,9)
..
(g) (2,3,4,5,7,8,9) ()

11

Comparator

Another design method

12

How to define order for any object? (1)
Integer, float, double
n Quite clear on how to define “order”

Student: id, sex, department
n S1 is less than S2? In what sense?

Flight Passengers: airplane number, seat number, sex
n P1 is less than P2? In what sense?

How to design “comparison logic” in a programming language?

What design is good?

13

Design 1: Separate Design
Different Priority Queue based on the element type and the
manner of comparing elements

PQ_Int, PQ_Student, PQ_XXX

Simple, but not general

Many copies of the same code

14

PQ_int PQ_student

i1 i2
i3

s1 s2
s3

integer
comparison

student
comparison

Design 2: Template and Overloading (2)

General enough for many situations
But,
n Cannot have multiple comparison

methods for the same type
n What about comparison based on y-

first, and x-next?

Even for the same data type, we want
to apply different comparison methods
A or B, depending on the situations

15

PQ<int> PQ<student>
i1 i2
i3

s1 s2
s3

integer
comparison:
“overload <“

student
comparison:
“overload <“

PQ template

<

Design 3: Separating Comparator (1)
2D points: Point2D p, Point 2: q
n Sometimes we want either of

X-based comparison, Y-based comparison

Idea
n Define a comparator class, e.g., “LeftRight” (x-based) and “BottomTop” (y-

based)
n Overload “()” operator

16

Design 3: Separating Comparator (2)

17

PQ<int> PQ<student>
i1 i2
i3

s1 s2
s3

c1 c2 c’1 c’2

In C++

18

Heaps

2

65

79

19

Recall Priority Queue ADT
A priority queue stores a
collection of entries
Typically, an entry is a pair
(key, value), where the key
indicates the priority
Main methods of the Priority
Queue ADT
n insert(e) inserts an entry e
n removeMin()

removes the entry with smallest
key

Additional methods
n min()

returns, but does not remove, an
entry with smallest key

n size(), empty()
Applications:
n Standby flyers
n Auctions
n Stock market

20

Recall PQ Sorting
We use a priority queue
n Insert the elements with a series

of insert operations
n Remove the elements in sorted

order with a series of
removeMin operations

The running time depends on the
priority queue implementation:
n Unsorted sequence gives

selection-sort: O(n2) time
n Sorted sequence gives insertion-

sort: O(n2) time

Can we do better? Balancing the
above

21

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C
for the elements of S
Output sequence S sorted in
increasing order according to C
P ¬ priority queue with

comparator C
while ¬S.empty ()

e ¬ S.front(); S.eraseFront()
P.insert (e, Æ)

while ¬P.empty()
e ¬ P.removeMin()
S.insertBack(e)

We will have these results soon …

22

Sequence-based Heap-based

Key: Where were the “unnecessary repetitions” and “stupidity”?

Heap: Overview
A heap is a binary tree storing keys at its nodes and satisfying the following
properties:
n 1. Heap-order property
n 2. Complete binary tree property

The last node of a heap is the rightmost node of maximum depth

23

last
node

1. Heap-order property
1. Heap-Order: for every internal node v other than the root,
key(v) ³ key(parent(v))
n The keys encountered on a path from the root to a leaf T are nondecreasing
n A minimum key: always at the root

24

2. Complete binary tree property
Complete Binary Tree
n Roughly speaking, every level, except for the last level, is completely filled, and

all nodes in the last level are as far left as possible.

let h be the height of the heap
n for i = 0, … , h - 1, there are 2i nodes of depth i
n at depth h - 1, the internal nodes are to the left of the external nodes

25

Height of a Heap of n elements
Theorem: A heap storing n keys has height O(log n)
Proof: (we apply the complete binary tree property)
n Let h be the height of a heap storing n keys
n Since there are 2i keys at depth i = 0, … , h - 1 and at least one key at depth h, we

have n ³ 1 + 2 + 4 + … + 2h-1 + 1
n Thus, n ³ 2h , i.e., h £ log n

26

1

2

2h-1

1

keys
0

1

h-1

h

depth

Heaps and Priority Queues
We can use a heap to implement a priority queue
n We say “heap-based PQ implementation”

We store a (key, element) item at each internal node
We keep track of the position of the last node
n I am able to know who is the last node in O(1) time
n Easy

27

(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)

Insertion into a Heap
Method insert of the
priority queue ADT
corresponds to the
insertion of a key k to the
heap

The insertion algorithm
consists of three steps
n Find the insertion node z (the

new last node)
w How? discussed later

n Store k at z
n Restore the heap-order

property (discussed next)

28

2

65

79

insertion node
2

65

79 1

z

z

Upheap
After the insertion of a new key k, the heap-order property may be violated
Algorithm upheap restores the heap-order property by swapping k along an
upward path from the insertion node
Upheap terminates when the key k reaches the root or a node whose parent
has a key smaller than or equal to k
Since a heap has height O(log n), upheap runs in O(log n) time

29

2

15

79 6z

1

25

79 6z

30

Insert: (2,T)

Removal from a Heap
Method removeMin of the
priority queue ADT
corresponds to the removal
of the root key from the
heap

The removal algorithm
consists of three steps
n Replace the root key with the

key of the last node w
n Remove w
n Restore the heap-order

property (discussed next)

31

2

65

79

last node

w

7

65

9
w

new last node

Downheap
After replacing the root key with the key k of the last node, the heap-order
property may be violated
Algorithm downheap restores the heap-order property by swapping key k
along a downward path from the root (but which path?)
Upheap terminates when key k reaches a leaf or a node whose children have
keys greater than or equal to k
Since a heap has height O(log n), downheap runs in O(log n) time

32

7

65

9
w

5

67

9
w

33

removeMin Updating the Last Node
How can we find the insertion node (a new last node)?
n The insertion node can be found by traversing a path of O(log n) nodes
n (1) Go up until a left child or the root is reached
n (2) If a left child is reached, go to the right child
n (3) Go down left until a leaf is reached

Similar algorithm for updating the last node after a removal

34

Heap-Sort
Consider a priority queue
with n items implemented
by means of a heap
n the space used is O(n)
n methods insert and

removeMin take O(log n)
time

n methods size, empty, and min
take time O(1) time

Using a heap-based priority
queue, we can sort a sequence
of n elements in O(n log n) time
n Construction: n insertions
n Actual sorting: n removals

The resulting algorithm is called
heap-sort
Heap-sort is much faster than
quadratic sorting algorithms,
such as insertion-sort and
selection-sort

35

Sequence-based vs. Heap-based

36

Sequence-based Heap-based

How do we remove “stupid repetition”?

Vector-based Heap Implementation
We can represent a heap with n
keys by means of a vector of
length n + 1
For the node at rank i
n the left child is at rank 2i
n the right child is at rank 2i + 1

Links between nodes are not
explicitly stored
The cell of at rank 0 is not used
Operation insert corresponds to
inserting at rank n + 1
Operation removeMin
corresponds to removing at rank
n

37

2

65

79

2 5 6 9 7
1 2 3 4 50

1

2 3

4 5

Merging Two Heaps
We are given two heaps
and a key k
We create a new heap with
the root node storing k and
with the two heaps as
subtrees
We perform downheap to
restore the heap-order
property

38

7

3

58

2

64

3

58

2

64

2

3

58

4

67

Questions?

