

Introduction

Priority Queue

- Data structure for storing a collection of prioritized elements
- Supporting arbitrary element insertion
- Supporting removal of elements in order of priority

So far, we covered "position-based" data structures

- Stacks, queues, deques, lists, and even lists
- Store elements at specific positions (linear or hierarchical)
- Insertion and removal based on "position" (linear or hierarchical)
- But, priority queue
 - Insertion and removal: priority-based

Question: how to express the priority of an element

• Key (example: your student id)

Priority Queue ADT

- A priority queue stores a collection of entries
- Typically, an entry is a pair (key, value), where the key indicates the priority
- Main methods of the Priority Queue ADT
 - insert(e) inserts an entry e (with an implicit associated key value)
 - removeMin() removes the entry with smallest key

- Additional methods
 - min() returns, but does not remove, an entry with smallest key
 - size(), empty()
- Applications:
 - Standby flyers
 - Auctions
 - Stock market

Total Order Relations (a topic of Discrete Math)

- Keys in a priority queue can be arbitrary objects on which an order is defined
- Two distinct entries in a priority queue can have the same key
- Total ordering
 - Comparison rule should be defined for every pair of keys

- ◆ Mathematical concept of total order relation ≤
 - Reflexive property:
 x ≤ *x*
 - Antisymmetric property: $x \le y \land y \le x \Longrightarrow x = y$
 - Transitive property: $x \le y \land y \le z \Longrightarrow x \le z$
- Satisfying the above three properties ensures:
 - Never leading to a comparison contradiction

Example: Total order & Partial order

- 2D points with (x-coordinate, y-coordinate)
 - Define relation '>=' based on x-first, and y-next
 - (4,3) >= (3,4), (3,5) >= (3,4)
 - Total ordering
 - What about defining relation '>=' based on both x and y
 - (4,3) >=(2,1), but (4,3) ??? (3,4)
 - Partial ordering
 - Comparison not defined for some objects
- We assume that we define a comparison that leads to total ordering.

Priority Queue Sorting

- We can use a priority queue to sort a set of comparable elements
 - Insert the elements one by one with a series of insert operations
 - Remove the elements in sorted order with a series of removeMin operations
- The running time of this sorting method depends on the priority queue implementation

Algorithm *PQ-Sort(S, C)* Input sequence *S*, comparator *C* for the elements of *S* Output sequence *S* sorted in increasing order according to *C* $P \leftarrow$ priority queue with comparator *C* while $\neg S.empty$ () $e \leftarrow S.front(); S.eraseFront()$ *P.insert* (e, \emptyset) while $\neg P.empty()$ $e \leftarrow P.removeMin()$ *S.insertBack(e)*

6

Sequence-based Priority Queue

 Implementation with an unsorted list

- Performance:
 - insert takes O(1) time since we can insert the item at the beginning or end of the sequence
 - removeMin and min take
 O(n) time since we have to traverse the entire sequence to find the smallest key

Implementation with a sorted list

- Performance:
 - insert takes O(n) time since we have to find the place where to insert the item
 - removeMin and min take O(1) time, since the smallest key is at the beginning

Selection-Sort

- Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted sequence
- Running time of Selection-sort:
 - 1. Inserting the elements into the priority queue with *n* insert operations takes *O*(*n*) time
 - 2. Removing the elements in sorted order from the priority queue with *n* removeMin operations takes time proportional to
 - 1 + 2 + ...+ **n**
- Selection-sort runs in $O(n^2)$ time

Selection-Sort Example

Input:	Sequence S (7,4,8,2,5,3,9)	Priority Queue P ()
Phase 1 (a)	(4.8.2.5.3.9)	(7)
(b)	(8,2,5,3,9)	(7,4)
 (g)	()	(7,4,8,2,5,3,9)
Phase 2		
(a)	(2)	(7,4,8,5,3,9)
(b)	(2,3)	(7,4,8,5,9)
(c)	(2,3,4)	(7,8,5,9)
(d)	(2,3,4,5)	(7,8,9)
(e)	(2,3,4,5,7)	(8,9)
(f)	(2,3,4,5,7,8)	(9)
(g)	(2,3,4,5,7,8,9)	()

Insertion-Sort

- Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted sequence
- Running time of Insertion-sort:
 - 1. Inserting the elements into the priority queue with *n* insert operations takes time proportional to

1 + 2 + …+ *n*

10

- 2. Removing the elements in sorted order from the priority queue with a series of *n* removeMin operations takes *O*(*n*) time
- Insertion-sort runs in $O(n^2)$ time

9

Insertion-Sort Example

Input:	Sequence S (7,4,8,2,5,3,9)	Priority queue P ()
Phase 1		
(a)	(4,8,2,5,3,9)	(7)
(b)	(8,2,5,3,9)	(4,7)
(c)	(2,5,3,9)	(4,7,8)
(d)	(5,3,9)	(2,4,7,8)
(e)	(3,9)	(2,4,5,7,8)
(f)	(9)	(2,3,4,5,7,8)
(g)	()	(2,3,4,5,7,8,9)
Phase 2		
(a)	(2)	(3,4,5,7,8,9)
(b)	(2,3)	(4,5,7,8,9)
(g)	(2,3,4,5,7,8,9)	()

How to define order for any object? (1)

- Integer, float, double
 - Quite clear on how to define "order"
- Student: id, sex, department
 - S1 is less than S2? In what sense?
- Flight Passengers: airplane number, seat number, sex
 - P1 is less than P2? In what sense?
- How to design "comparison logic" in a programming language?
- What design is good?

Design 1: Separate Design

- Different Priority Queue based on the element type and the manner of comparing elements
- PQ_Int, PQ_Student, PQ_XXX
- Simple, but not general
- Many copies of the same code

Design 2: Template and Overloading (2)

Design 3: Separating Comparator (1)

- 2D points: Point2D p, Point 2: q
 - Sometimes we want either of X-based comparison, Y-based comparison
- 🔶 Idea
 - Define a comparator class, e.g., "LeftRight" (x-based) and "BottomTop" (y-based)
 - Overload "()" operator

13

Design 3: Separating Comparator (2)

Point2D p(1.3, 5.7), q(2.5, 0.6);	// two points	
LeftRight leftRight;	<pre>// a left-right comparator</pre>	
BottomTop bottomTop;	<pre>// a bottom-top comparator</pre>	
printSmaller(p, q, leftRight);	// outputs: (1.3, 5.7)	
printSmaller(p, q, bottomTop);	// outputs: (2.5, 0.6)	

template <typename E, typename C> // element type and comparator void printSmaller(const E& p, const E& q, const C& isLess) { cout << (isLess(p, q) ? p : q) << endl; // print the smaller of p and q }

#include <functional> #include <iostream> bool operator()(int a, int b) const return a > b; } std::array<int, 10> s = {5, 7, 4, 2, 8, 6, 1, 9, 0, 3}; // sort using the default operator<
std::sort(s.begin(), s.end());</pre> for (int i=0 ; i<s.size();i++) {
 std::cout << s[i] << " ";</pre> std::cout << '\n';</pre> MyLess myless; std::sort(s.begin(), s.end(), myless); for (int i=0 ; i<s.size();i++) {
 std::cout << s[i] << " ";</pre> std::cout << '\n';</pre> [yi@iMacyung ~/tmp]# ./a.out 1 2 3 4 5 6 7 8 9 876543210

Recall Priority Queue ADT

 A priority queue stores a collection of entries

In C++

17

- Typically, an entry is a pair (key, value), where the key indicates the priority
- Main methods of the Priority Queue ADT
 - insert(e) inserts an entry e
 - removeMin() removes the entry with smallest key

- Additional methods
 - min() returns, but does not remove, an entry with smallest key
 - size(), empty()
- Applications:
 - Standby flyers
 - Auctions
 - Stock market

Recall PQ Sorting

- ♦ We use a priority queue
 - Insert the elements with a series of insert operations
 - Remove the elements in sorted order with a series of removeMin operations
- The running time depends on the priority queue implementation:
 - Unsorted sequence gives selection-sort: O(n²) time
 - Sorted sequence gives insertionsort: O(n²) time
- Can we do better? Balancing the above

- Algorithm PQ-Sort(S, C) Input sequence S, comparator C for the elements of S Output sequence S sorted in increasing order according to C $P \leftarrow$ priority queue with comparator C while $\neg S.empty$ ()
 - $e \leftarrow S.front(); S.eraseFront()$ *P.insert* (e, \emptyset) while $\neg P.empty()$

e ← P.removeMin() S.insertBack(e)

21

We will have these results soon ...

Sequence-based

Unsorted List	Sorted List
<i>O</i> (1)	<i>O</i> (1)
<i>O</i> (1)	O(n)
O(n)	<i>O</i> (1)
	$ \begin{array}{r} \textbf{Unsorted List} \\ O(1) \\ O(1) \\ O(n) \\ \end{array} $

Heap-based

Operation	Time
size, empty	<i>O</i> (1)
min	<i>O</i> (1)
insert	$O(\log n)$
removeMin	$O(\log n)$

Key: Where were the "unnecessary repetitions" and "stupidity"?

22

Heap: Overview

- A heap is a binary tree storing keys at its nodes and satisfying the following properties:
 - 1. Heap-order property
 - 2. Complete binary tree property
- The last node of a heap is the rightmost node of maximum depth

1. Heap-order property

- ◆ 1. Heap-Order: for every internal node v other than the root, key(v) ≥ key(parent(v))
 - The keys encountered on a path from the root to a leaf T are nondecreasing
 - A minimum key: always at the root

2. Complete binary tree property

- Complete Binary Tree
 - Roughly speaking, every level, except for the last level, is completely filled, and all nodes in the last level are as far left as possible.
- let h be the height of the heap
 - for i = 0, ..., h 1, there are 2^i nodes of depth i
 - at depth h 1, the internal nodes are to the left of the external nodes

25

Heaps and Priority Queues

- We can use a heap to implement a priority queue
 - We say "heap-based PQ implementation"
- ◆ We store a (key, element) item at each internal node
- We keep track of the position of the last node
 - I am able to know who is the last node in O(1) time
 - Easy

Height of a Heap of *n* elements

- Theorem: A heap storing *n* keys has height *O*(log *n*)
 Proof: (we apply the complete binary tree property)
 - Let *h* be the height of a heap storing *n* keys
 - Since there are 2ⁱ keys at depth *i* = 0, ..., *h* − 1 and at least one key at depth *h*, we have *n* ≥ 1 + 2 + 4 + ... + 2^{*h*−1} + 1
 - Thus, $n \ge 2^h$, i.e., $h \le \log n$

26

Insertion into a Heap

- Method insert of the priority queue ADT corresponds to the insertion of a key k to the heap
- The insertion algorithm consists of three steps
 - Find the insertion node z (the new last node)
 - How? discussed later
 - Store *k* at *z*
 - Restore the heap-order property (discussed next)

Upheap

- \bullet After the insertion of a new key k, the heap-order property may be violated
- Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node
- Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time

29

Removal from a Heap

- Method removeMin of the priority queue ADT corresponds to the removal of the root key from the heap
- The removal algorithm consists of three steps
 - Replace the root key with the key of the last node w
 - Remove *w*
 - Restore the heap-order property (discussed next)

Downheap

- After replacing the root key with the key k of the last node, the heap-order property may be violated
- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root (but which path?)
- Upheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time

removeMin

Updating the Last Node

- How can we find the insertion node (a new last node)?
 - The insertion node can be found by traversing a path of $O(\log n)$ nodes
 - (1) Go up until a left child or the root is reached
 - (2) If a left child is reached, go to the right child
 - (3) Go down left until a leaf is reached
- Similar algorithm for updating the last node after a removal

Heap-Sort

- Consider a priority queue with *n* items implemented by means of a heap
 - the space used is **O**(**n**)
 - methods insert and removeMin take O(log n) time
 - methods size, empty, and min take time O(1) time

- Using a heap-based priority queue, we can sort a sequence of *n* elements in *O*(*n* log *n*) time
 - Construction: n insertions
 - Actual sorting: n removals
- The resulting algorithm is called heap-sort
- Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort

Sequence-based vs. Heap-based

Sequence-based

Operation	Unsorted List	Sorted List
size, empty	<i>O</i> (1)	<i>O</i> (1)
insert	<i>O</i> (1)	O(n)
min, removeMin	O(n)	<i>O</i> (1)

Heap-based

Operation	Time
size, empty	<i>O</i> (1)
min	<i>O</i> (1)
insert	$O(\log n)$
removeMin	$O(\log n)$

How do we remove "stupid repetition"?

Vector-based Heap Implementation

- We can represent a heap with *n* keys by means of a vector of length *n* + 1
- For the node at rank *i*
 - the left child is at rank 2*i*
 - the right child is at rank 2i + 1
- Links between nodes are not explicitly stored
- ◆ The cell of at rank 0 is not used
- Operation insert corresponds to inserting at rank n + 1
- Operation removeMin corresponds to removing at rank
 n

2 5 6 9 7 0 1 2 3 4 5

Merging Two Heaps

- We are given two heaps and a key k
- We create a new heap with the root node storing k and with the two heaps as subtrees
- We perform downheap to restore the heap-order property

38

