So Far

€ Now, familiar with
m Order of running time
m Big-Oh function
s Amortized analysis

@ Vector and List
m Storing elements in a linear fashion

@ Position
s Containers and Iterators

NID

Trees

Stock
Fraud

[Make Money Fast!]

Ponzi
Scheme

Bank
Robbery

|

/N

Summary
@ Reading: Chapters 7.1, 7.2, 7.3

m This chapter: Basics
m Later in Chapter 10, we will cover:

10 Search Trees 423
10.1 Binary Search Trees 424
10.1.1 Searching 426
10.1.2 Update Operations 428
10.1.3 C++ Implementation of a Binary Search Tree 432

10,2 AVL Trees. 438
10.2.1 Update Operations 440
10.2.2 C++ Implementation of an AVL Tree 446
10.3Splay Trees 450
10.3.1 Splaying 450
10.32 WhentoSplay. 454
10.3.3 Amortized Analysis of Splayingx 456

10.4 (2,4) Trees 461
10.4.1 Multi-Way Search Trees 461
10.4.2 Update Operations for (2,4) Trees 467

10.5 Red-Black Trees 473
10.5.1 Update Operations 475
10.5.2 C++ Implementation of a Red-Black Tree 488

10.6 Exercises 492

What is a Tree?

@ A graph without cycles

&

[Computers”"R"Us]

In software systems, a tree is an
abstract model of a hierarchical
structure

m Compared with “linear” data
structures

[Manufacturing]

N

[US] [International] [Laptops] [Desktops]

Europe l Asia I [Canada]

A tree consists of nodes with a
parent-child relation

Applications:
m Organization charts

m File systems
m Programming environments

Example: File System

cs016/

grades

homeworks/

/- N\

/user/rt/coursesn

programs/ W

/

\

h

o

hw3

pri

pr2

pr3

=~
/ N\

projects/ j grades

cs252/ |

papers/

demos/

buylow

sellhigh

market

Tree Terminology

&
&

Root: node without parent (A)
Internal node: node with at least
one child (A, B, C, F)

External node (a.k.a. leaf): node
without children (E, 1, J, K, G, H,
D)

Ancestors of a node: parent,

grandparent, grand-grandparent,
etc.

Depth of a node: number of
ancestors

Height of a tree: maximum depth
of any node (3)

Descendant of a node: child,

grandchild, grand-grandchild, etc.

o Subtree: tree consisting of a
node and its descendants

Tree ADT

@ We can use positions to abstract
nodes @ Query methods:

#® Generic methods:
m integer size()
m boolean empty()

@ Accessor methods:
m position root()
m list<position> positions()

@ Position-based methods:
m position p.parent()
m list<position> p.children()

m boolean p.isRoot()
m boolean p.isExternal()

@ Additional “update” methods

may be defined by data
structures implementing the
Tree ADT

#® Remove the node at some
position

@ Swap a parent and its
specific child

@ Etc ...

A linked structure for General Trees

4 One way of implementing a general tree

parent ‘\\

(‘ l
PVD
\ °
element
/
\ | !
childrenContainer \ —
ATL BWI JFK LAX
\ | v \ J \ |

(a) (b)

Tree Traversal Algorithms

Traversal Computations
1. Depth?

2. Height?

3. Visit every nodes
m Preorder
m Postorder

m |Inorder

@ These are the basic things to do for a given tree

10

Example: “du” command

$> du —s . Print the aggregate file sizes from the current directory

/- N\

grades homeworksq

/user/rt/coursesﬁ

cs016/

programs/ W

yd

| /

\

hw1 hw2

hw3 pri

pr2

pr3

NG

cs252/ |

N\

projects/ j grades

papers/

demos/

buylow

sellhigh

market

11

1. Depth of a node

int depth(const Tree& T, const Position& p) {
if (p.isRoot())

return 0; // root has depth 0
else
return 1 + depth(T, p.parent()); // 1 + (depth of parent)
}

Complexity? O(d,), worst-case O(n)

12

2. Height of a tree T: heightl

@ Equal to the maximum depth of its leaves
@ OK. Then, what about this algorithm?

int heightl(const Tree& T) {
int h = 0;
PositionList nodes = T.positions(); // list of all nodes
for (Iterator q = nodes.begin(); q != nodes.end(); ++q) {

if (q—>isExternal())
h = max(h, depth(T, *q)); // get max depth among leaves

}

return h:

- a . - . ~ - ~

@ Complexity?
O(n + Zp(l + dp)) Worst-case: O(r¥)

13

Two Trees

n-1 leaves

n/2 non-leaves

n/2 leaves

14

2. Height of a tree T: height2
@ Why is height1 inefficient?

int height2(const Tree& T, const Position& p) {

if (p.isExternal()) return 0; // leaf has height 0
int h = 0;
PositionList ch = p.children(); // list of children

for (Iterator g = ch.begin(); q != ch.end(); ++q)
h = max(h, height2(T, *q));
return 1 + h; // 1 + max height of children
}

O(X,(14+cp)) Worst-case: O(n)

15

3. Preorder Travers

@ A traversal visits the nodes of a
tree in a systematic manner

@ In a preorder traversal, a node
visited before its descendants

@ Application: print a structured
document

1

al

is

Algorithm preOrder(v)
visit(v)
for each child w of v

preorder (w)

[Make Money Fast!]

, e

[1. Motivations]

3 /\4

6 _— 7] 038

[2. Methods] [References]

[1.1Greed | [1.2 Avidity | [

2.1 Stock
Fraud

2.2 Ponzi 2.3 Bank
Scheme Robbery

16

3. Postorder Traversal

@ In a postorder traversal, a node is
visited after its descendants

@ Application: compute space used
by files in a directory and its
subdirectories

9

3

[homeworks/]

1 /\2

4

Algorithm postOrder(v)
for each child w of v
postOrder (w)
visit(v)

DDR.cpp

10K

hic.doc hinc.doc
3K 2K

[) |

8
7 —
todo.txt
[programs/] [1K]
5 6
Stocks.cpp Robot.cpp
25K 20K

17

3. Inorder Traversal

@ |n an inorder traversal a node is
visited after its left subtree and
before its right subtree

@ Application: draw a binary tree

s X(v) =inorder rank of v
s y(v) =depthofv

Algorithm inOrder(v)
if — v.isExternal()
inOrder(v.left())
visit(v)
if — v.isExternal()
inOrder(v.right())

18

Binary Tree

19

Binary Trees

1 A binary tree is a tree with the
following properties:
m Each internal node has at most

two children (exactly two for
proper binary trees)

m The children of a node are an
ordered pair

) We call the children of an internal
node left child and right child

) Alternative recursive definition: a
binary tree is either

m a tree consisting of a single node,
or

m a tree whose root has an ordered
pair of children, each of which is
a binary tree

o Applications:
m arithmetic expressions
m decision processes

m searching

20

Arithmetic Expression Tree

@ Binary tree associated with an arithmetic expression
m internal nodes: operators

m external nodes: operands

@ Example: arithmetic expression tree for the expression (2 x (a —
1) + (3 x b))

21

Decision Tree

@ Binary tree associated with a decision process
m internal nodes: questions with yes/no answer

m external nodes: decisions

@ Example: dining decision

[Want a fast meal?}
Yes No

[How about coffee?} [On expense account?}

Y, es/wo Y, MO

Starbucks Spike’s | | Al Forno Café Paragon

22

Properties of Proper Binary Trees

@ Notation

n number of nodes & Properties:

¢ number of external nodes s e=i+1

I number of internal nodes

h height = n=2e-1
m h<i
m h< (n - 1)/2
m e 2h
m h=>log,e

m h>log,(n+1)-1

23

BinaryTree ADT

@ The BinaryTree ADT
extends the Tree ADT,

i.e., it inherits all the
methods of the Tree ADT

@ Additional methods:
m position p.left()
m position p.right()

@ Update methods may be
defined by data structures

implementing the
BinaryTree ADT

@ Proper binary tree: Each
node has either QO or 2
children

24

Evaluate Arithmetic Expressions

@ Specialization of a postorder
traversal

m recursive method returning the
value of a subtree

= when visiting an internal node,
combine the values of the
subtrees

Algorithm evalExpr(v)

if viisExternal()
return v.element()

else
x < evalExpr(v.left())
y < evalExpr(v.right())
0 « operator stored at v
return x ¢ y

25

How to represent trees
in programming language?

26

Recall: Linked Structure for Trees

@ A node is represented by an object

storing
s Element
m Parent node

s Sequence of children nodes

B

%)

@ Node objects implement the Position

ADT

1;

Q@

(

%)

]
-

27

Linked Structure for Binary Trees

@ A node is represented by an object
storing

s Element

m Parent node

)
B
m Left child node
= Right child node
@ Node objects implement the Position

ADT 1Y d
e

€ —

A (D, [@é@] [@é@]

28

Array-Based Representation of Binary Trees

Nodes are stored in an array A

[ABD...GH
o 1 2 3 10 11

Q Node v is stored at A[rank(v)]
m rank(root) =1

m if node is the left child of parent(node),
rank(node) = 2 - rank(parent(node))

m if node is the right child of parent(node),
rank(node) = 2 - rank(parent(node)) + 1

29

Questions?

