So Far

Now, familiar with

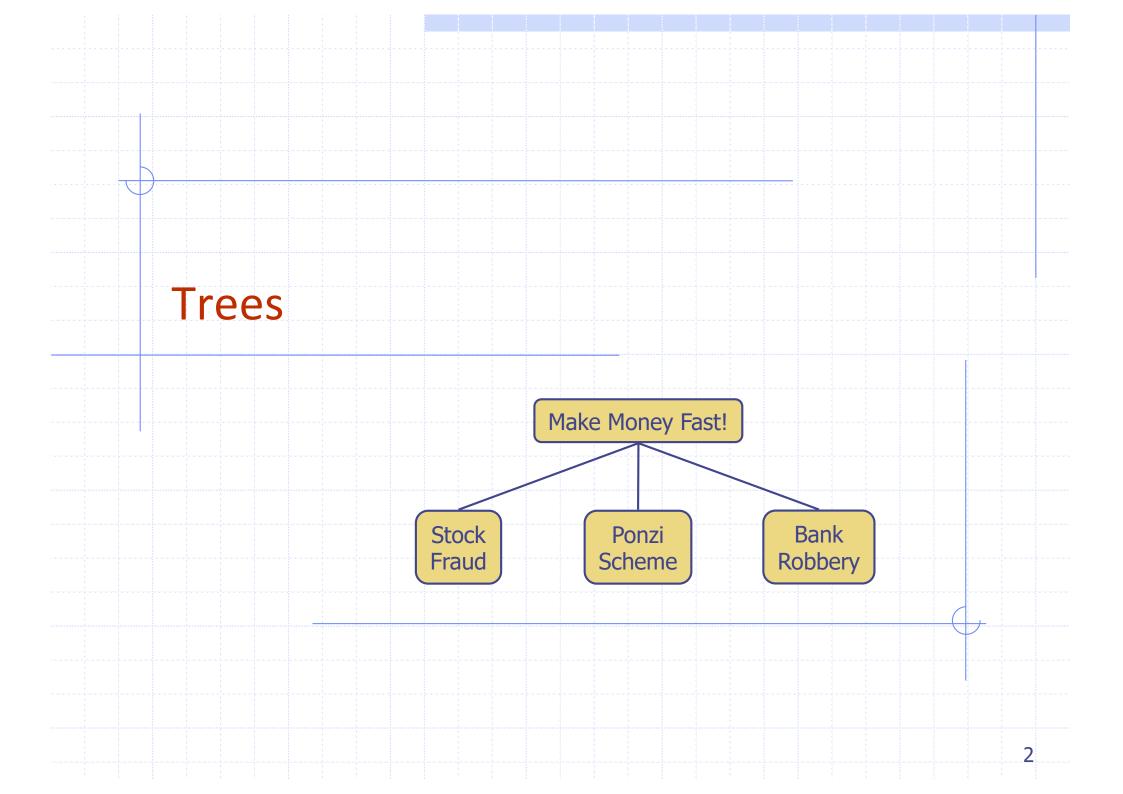
- Order of running time
- Big-Oh function
- Amortized analysis

Vector and List

Storing elements in a linear fashion

Position

Containers and Iterators



Summary

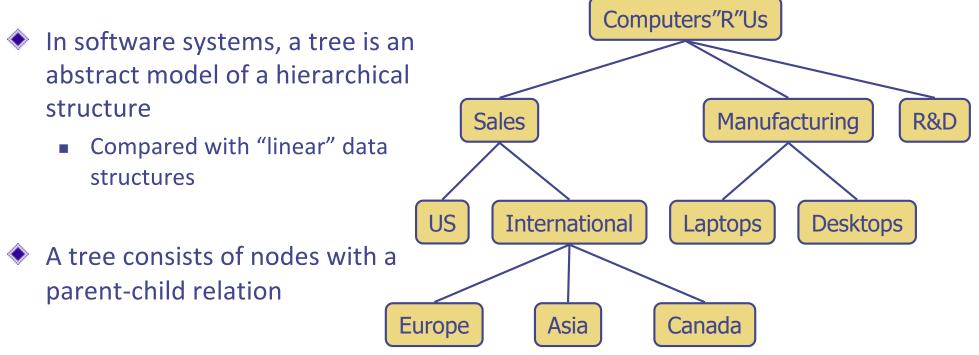
Reading: Chapters 7.1, 7.2, 7.3

- This chapter: Basics
- Later in Chapter 10, we will cover:

10 Search Trees	423
10.1 Binary Search Trees	424
10.1.1 Searching	426
10.1.2 Update Operations	428
10.1.3 C++ Implementation of a Binary Search Tree	432
10.2 AVL Trees	438
10.2.1 Update Operations	440
10.2.2 C++ Implementation of an AVL Tree	446
10.3 Splay Trees	450
10.3.1 Splaying	450
10.3.2 When to Splay	454
10.3.3 Amortized Analysis of Splaying 🛧 🗉	456
10.4 (2,4) Trees	461
10.4.1 Multi-Way Search Trees	461
10.4.2 Update Operations for $(2,4)$ Trees \ldots \ldots	467
10.5 Red-Black Trees	473
10.5.1 Update Operations	475
10.5.2 C++ Implementation of a Red-Black Tree	488
10.6 Exercises	492

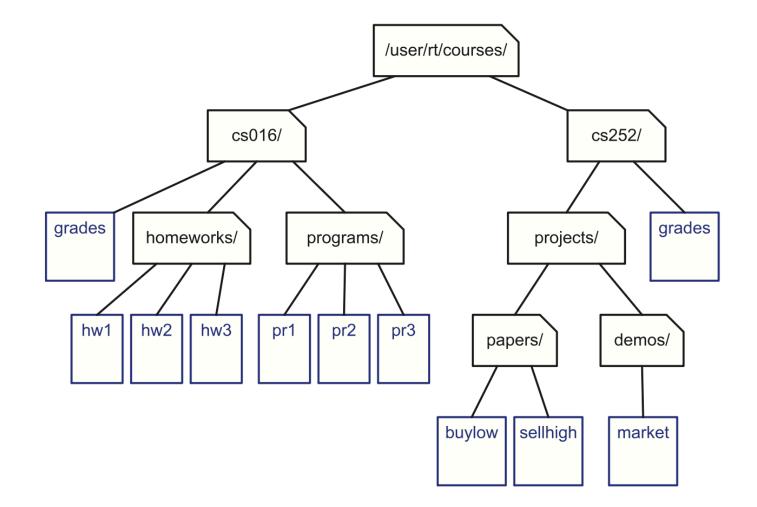
What is a Tree?

A graph without cycles



- Applications:
 - Organization charts
 - File systems
 - Programming environments

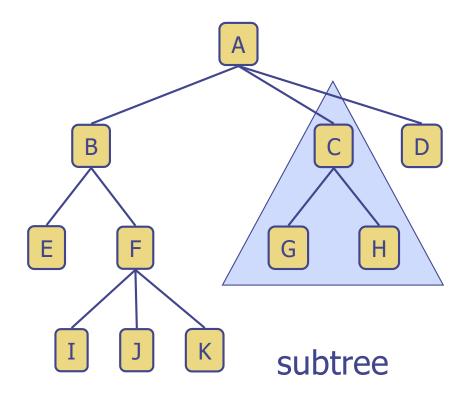
Example: File System



Tree Terminology

- Root: node without parent (A)
- Internal node: node with at least one child (A, B, C, F)
- External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Depth of a node: number of ancestors
- Height of a tree: maximum depth of any node (3)
- Descendant of a node: child, grandchild, grand-grandchild, etc.

Subtree: tree consisting of a node and its descendants



Tree ADT

We can use positions to abstract nodes

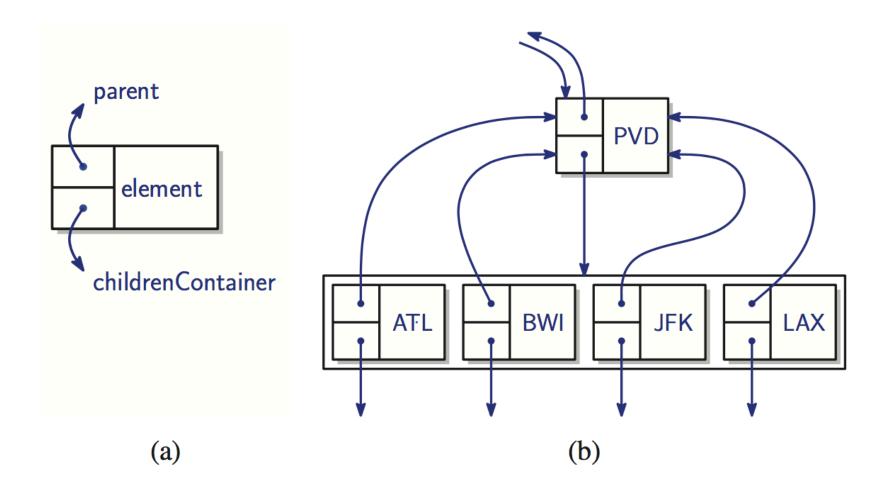
Generic methods:

- integer size()
- boolean empty()
- Accessor methods:
 - position root()
 - list<position> positions()
- Position-based methods:
 - position p.parent()
 - list<position> p.children()

- Query methods:
 - boolean p.isRoot()
 - boolean p.isExternal()
- Additional "update" methods may be defined by data structures implementing the Tree ADT
 - Remove the node at some position
 - Swap a parent and its specific child
 - 🕨 Etc ...

A linked structure for General Trees

One way of implementing a general tree



Tree Traversal Algorithms

Traversal Computations

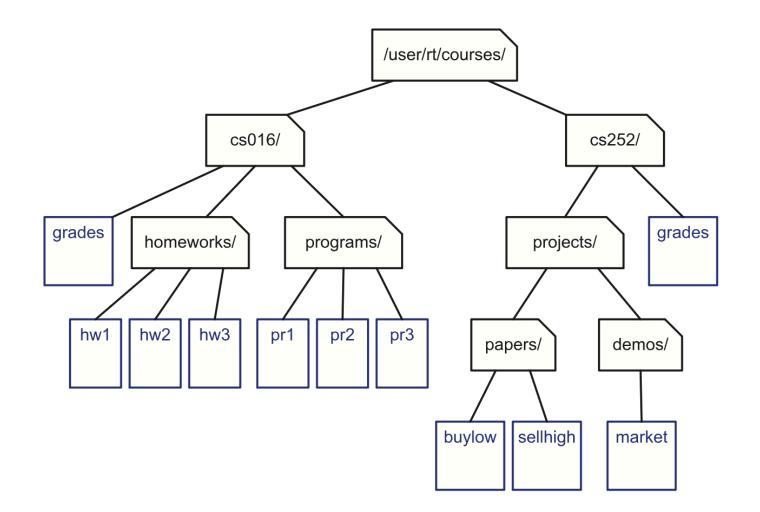
1. Depth?

- 2. Height?
- 3. Visit every nodes
 - Preorder
 - Postorder
 - Inorder

These are the basic things to do for a given tree

Example: "du" command

\$> du -s . Print the aggregate file sizes from the current directory



1. Depth of a node

Complexity? $O(d_p)$, worst-case O(n)

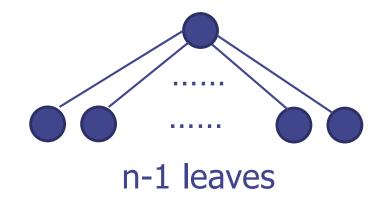
2. Height of a tree T: height1

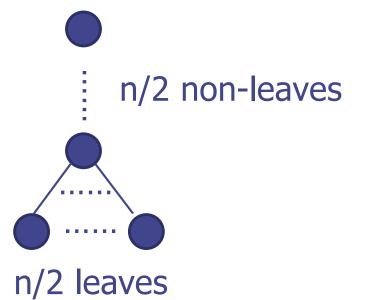
Equal to the maximum depth of its leaves

OK. Then, what about this algorithm?

Complexity?

$$O(n + \sum_{p} (1 + d_p))$$
 Worst-case: $O(n^2)$





2. Height of a tree T: height2

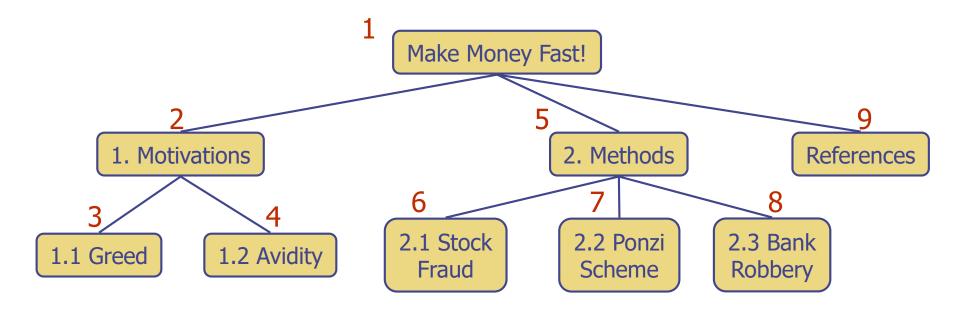
Why is height1 inefficient?

$$O(\sum_{p}(1+c_p))$$
 Worst-case: $O(n)$

3. Preorder Traversal

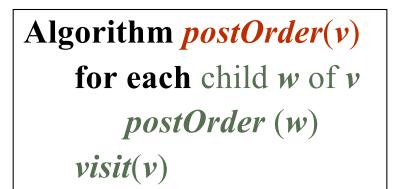
- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: print a structured document

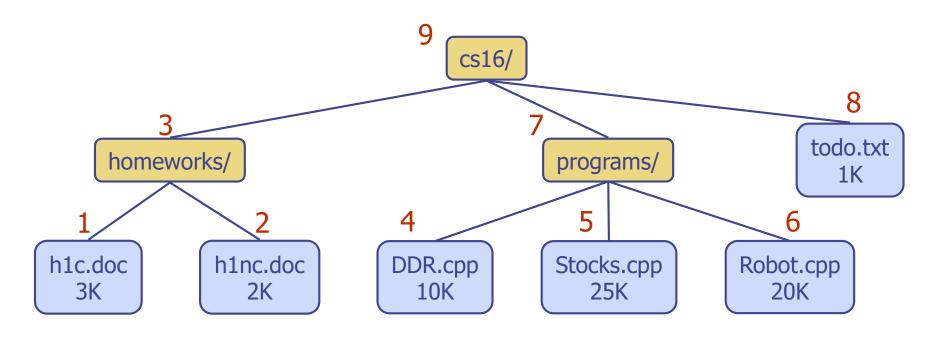
Algorithm *preOrder(v) visit(v)* for each child *w* of *v preorder (w)*



3. Postorder Traversal

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories





3. Inorder Traversal

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree

6

5

4

3

8

9

- x(v) = inorder rank of v
- y(v) = depth of v

```
Algorithm inOrder(v)

if ¬ v.isExternal()

inOrder(v.left())

visit(v)

if ¬ v.isExternal()

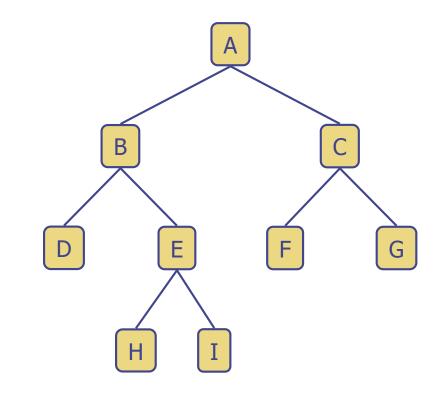
inOrder(v.right())
```

Binary Tree

Binary Trees

- A binary tree is a tree with the following properties:
 - Each internal node has at most two children (exactly two for proper binary trees)
 - The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, or
 - a tree whose root has an ordered pair of children, each of which is a binary tree

- Applications:
 - arithmetic expressions
 - decision processes
 - searching

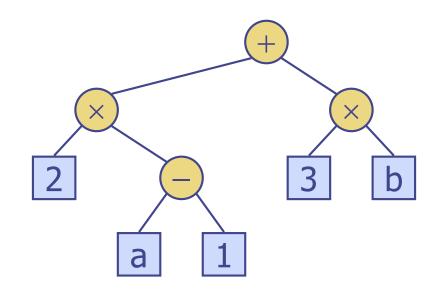


Arithmetic Expression Tree

Binary tree associated with an arithmetic expression

- internal nodes: operators
- external nodes: operands

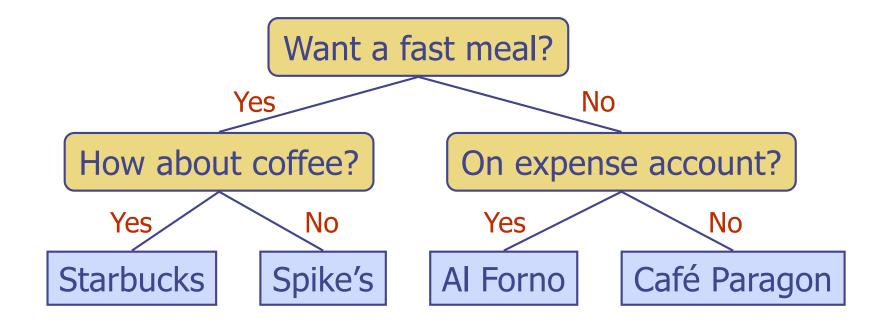
Example: arithmetic expression tree for the expression (2 × (a – 1) + (3 × b))



Decision Tree

Binary tree associated with a decision process

- internal nodes: questions with yes/no answer
- external nodes: decisions
- Example: dining decision



Properties of Proper Binary Trees

- Notation
 - *n* number of nodes
 - e number of external nodes
 - *i* number of internal nodes
 - h height

Properties: ■ *e* = *i* + 1 ■ **n** = 2**e** - 1 • $h \leq i$ ■ $h \le (n - 1)/2$ ■ *e* ≤ 2^{*h*} $\bullet h \geq \log_2 e$ ■ $h \ge \log_2(n+1) - 1$

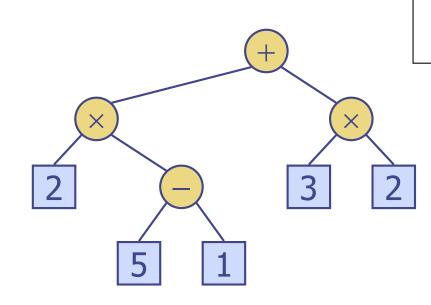
BinaryTree ADT

- The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT
- Additional methods:
 - position p.left()
 - position p.right()

- Update methods may be defined by data structures implementing the BinaryTree ADT
- Proper binary tree: Each node has either 0 or 2 children

Evaluate Arithmetic Expressions

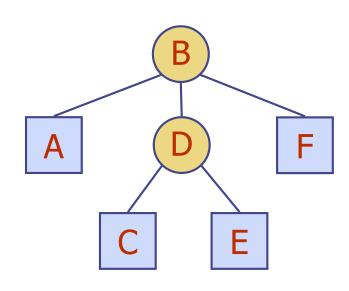
- Specialization of a postorder traversal
 - recursive method returning the value of a subtree
 - when visiting an internal node, combine the values of the subtrees

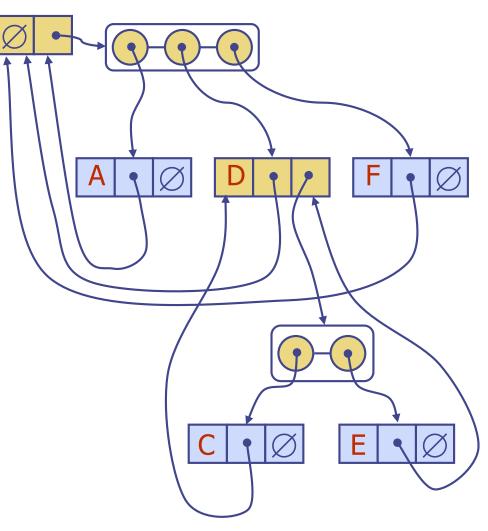


Algorithm evalExpr(v) if v.isExternal() return v.element() else $x \leftarrow evalExpr(v.left())$ $y \leftarrow evalExpr(v.right())$ $\diamond \leftarrow$ operator stored at v return $x \diamond y$ How to represent trees in programming language?

Recall: Linked Structure for Trees

- A node is represented by an object storing
 - Element
 - Parent node
 - Sequence of children nodes
- Node objects implement the Position ADT

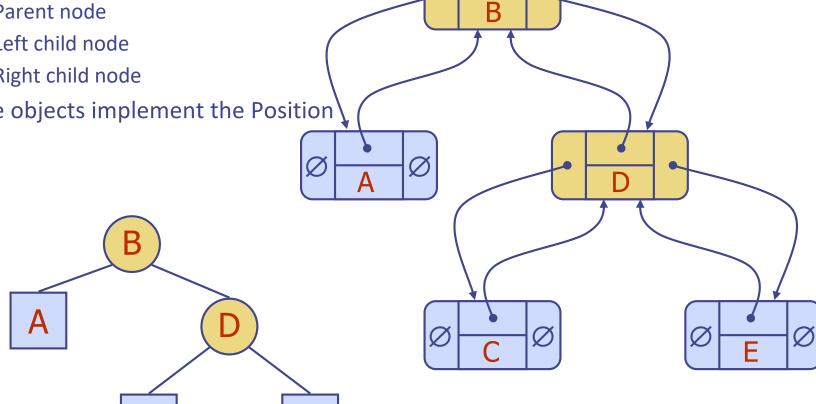




Linked Structure for Binary Trees

- A node is represented by an object storing
 - Element
 - Parent node
 - Left child node
 - Right child node
- Node objects implement the Position ADT

 $\mathbf{\Gamma}$



Ε

Ø

Array-Based Representation of Binary Trees

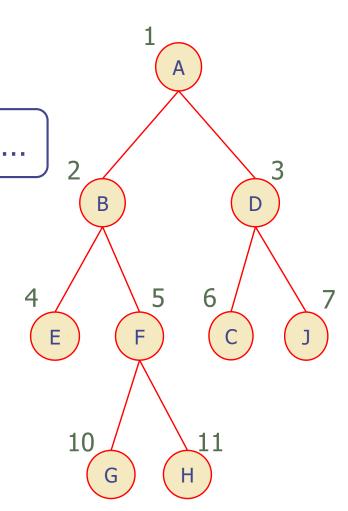
Nodes are stored in an array A

 A
 B
 D
 ...
 G
 H
 .

 0
 1
 2
 3
 10
 11

□ Node v is stored at A[rank(v)]

- rank(root) = 1
- if node is the left child of parent(node),
 rank(node) = 2 · rank(parent(node))
- if node is the right child of parent(node), rank(node) = 2 · rank(parent(node)) + 1



Questions?