
So Far
Now, familiar with
n Order of running time
n Big-Oh function
n Amortized analysis

Vector and List
n Storing elements in a linear fashion

Position
n Containers and Iterators

1



Trees

2

Make Money Fast!

Stock
Fraud

Ponzi
Scheme

Bank
Robbery



Summary
Reading: Chapters 7.1, 7.2, 7.3 
n This chapter: Basics
n Later in Chapter 10, we will cover:

3



What is a Tree?
A graph without cycles

In software systems, a tree is an 
abstract model of a hierarchical 
structure
n Compared with “linear” data 

structures

A tree consists of nodes with a 
parent-child relation

Applications:
n Organization charts
n File systems
n Programming environments

4

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada



Example: File System

5



Tree Terminology
Root: node without parent (A)
Internal node: node with at least 
one child (A, B, C, F)
External node (a.k.a. leaf ): node 
without children (E, I, J, K, G, H, 
D)
Ancestors of a node: parent, 
grandparent, grand-grandparent, 
etc.
Depth of a node: number of 
ancestors
Height of a tree: maximum depth 
of any node (3)
Descendant of a node: child, 
grandchild, grand-grandchild, etc.

6

subtree

A

B DC

G HE F

I J K

q Subtree: tree consisting of a 
node and its descendants



Tree ADT
We can use positions to abstract 
nodes

Generic methods:
n integer size()
n boolean empty()

Accessor methods:
n position root()
n list<position> positions()

Position-based methods:
n position p.parent()
n list<position> p.children()

7

Query methods:
n boolean p.isRoot()
n boolean p.isExternal()

Additional “update” methods 
may be defined by data 
structures implementing the 
Tree ADT

Remove the node at some 
position
Swap a parent and its 
specific child
Etc …



A linked structure for General Trees
One way of implementing a general tree

8



9

Tree Traversal Algorithms



Traversal Computations
1. Depth?

2. Height?

3. Visit every nodes
n Preorder
n Postorder
n Inorder

These are the basic things to do for a given tree

10



Example: ”du” command

11

$> du –s .  Print the aggregate file sizes from the current directory 



1. Depth of a node

12

Complexity? O(dp), worst-case O(n)



2. Height of a tree T: height1

13

Equal to the maximum depth of its leaves
OK. Then, what about this algorithm?

Complexity?

Worst-case: O(n2)



Two Trees

14

……
n-1 leaves

……

…
…

……

……

n/2 leaves

n/2 non-leaves



2. Height of a tree T: height2

15

Why is height1 inefficient?

Worst-case: O(n)



3. Preorder Traversal
A traversal visits the nodes of a 
tree in a systematic manner
In a preorder traversal, a node is 
visited before its descendants 
Application: print a structured 
document

16

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme1.1 Greed 1.2 Avidity 2.3 Bank

Robbery

1

2

3

5

4 6 7 8

9

Algorithm preOrder(v)
visit(v)
for each child w of v
preorder (w)



3. Postorder Traversal
In a postorder traversal, a node is 
visited after its descendants
Application: compute space used 
by files in a directory and its 
subdirectories

17

Algorithm postOrder(v)
for each child w of v
postOrder (w)

visit(v)

cs16/

homeworks/ todo.txt
1Kprograms/

DDR.cpp
10K

Stocks.cpp
25K

h1c.doc
3K

h1nc.doc
2K

Robot.cpp
20K

9

3

1

7

2 4 5 6

8



3. Inorder Traversal
In an inorder traversal a node is 
visited after its left subtree and 
before its right subtree
Application: draw a binary tree
n x(v) = inorder rank of v
n y(v) = depth of v

18

Algorithm inOrder(v)
if ¬ v.isExternal()
inOrder(v.left())

visit(v)
if ¬ v.isExternal()
inOrder(v.right())

3

1

2

5

6

7 9

8

4



19

Binary Tree



Binary Trees
q A binary tree is a tree with the 

following properties:
n Each internal node has at most 

two children (exactly two for 
proper binary trees)

n The children of a node are an 
ordered pair

q We call the children of an internal 
node left child and right child

q Alternative recursive definition: a 
binary tree is either
n a tree consisting of a single node, 

or
n a tree whose root has an ordered 

pair of children, each of which is 
a binary tree

20

q Applications:
n arithmetic expressions
n decision processes
n searching

A

B C

F GD E

H I



Arithmetic Expression Tree
Binary tree associated with an arithmetic expression
n internal nodes: operators
n external nodes: operands

Example: arithmetic expression tree for the expression (2 ´ (a -
1) + (3 ´ b))

21

+

´´

-2

a 1

3 b



Decision Tree
Binary tree associated with a decision process
n internal nodes: questions with yes/no answer
n external nodes: decisions

Example: dining decision

22

Want a fast meal?

How about coffee? On expense account?

Starbucks Spike’s Al Forno Café Paragon

Yes No

Yes No Yes No



Properties of Proper Binary Trees
Notation
n number of nodes
e number of external nodes
i number of internal nodes
h height

23

Properties:
n e = i + 1
n n = 2e - 1
n h £ i
n h £ (n - 1)/2
n e £ 2h

n h ³ log2 e
n h ³ log2 (n + 1) - 1



BinaryTree ADT
The BinaryTree ADT 
extends the Tree ADT, 
i.e., it inherits all the 
methods of the Tree ADT

Additional methods:
n position p.left()
n position p.right()

Update methods may be 
defined by data structures 
implementing the 
BinaryTree ADT

Proper binary tree: Each 
node has either 0 or 2 
children

24



Evaluate Arithmetic Expressions
Specialization of a postorder 
traversal
n recursive method returning the 

value of a subtree
n when visiting an internal node, 

combine the values of the 
subtrees

25

Algorithm evalExpr(v)
if v.isExternal()

return v.element()
else

x ¬ evalExpr(v.left())
y ¬ evalExpr(v.right())
à ¬ operator stored at v
return x à y+

´´

-2

5 1

3 2



26

How to represent trees
in programming language?



Recall: Linked Structure for Trees
A node is represented by an object 
storing
n Element
n Parent node
n Sequence of children nodes

Node objects implement the Position 
ADT

27

Æ

B

DA

C E

F

B

Æ ÆA D F

ÆC ÆE



Linked Structure for Binary Trees
A node is represented by an object 
storing
n Element
n Parent node
n Left child node
n Right child node

Node objects implement the Position 
ADT

28

B

DA

C E

Æ Æ

Æ Æ Æ Æ

B

A D

C E

Æ



Array-Based Representation of Binary Trees
Nodes are stored in an array A

29

q Node v is stored at A[rank(v)]
n rank(root) = 1
n if node is the left child of parent(node), 

rank(node) = 2 × rank(parent(node))
n if node is the right child of parent(node), 

rank(node) = 2 × rank(parent(node)) + 1

1

2 3

6 74 5

10 11

A

HG

FE

D

C

B

J

A B D G H ……
1 2 3 10 110



Questions?


