
So Far
Now, familiar with
n Order of running time
n Big-Oh function
n Amortized analysis

Vector and List
n Storing elements in a linear fashion

Position
n Containers and Iterators
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Trees
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Summary
Reading: Chapters 7.1, 7.2, 7.3 
n This chapter: Basics
n Later in Chapter 10, we will cover:
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What is a Tree?
A graph without cycles

In software systems, a tree is an 
abstract model of a hierarchical 
structure
n Compared with “linear” data 

structures

A tree consists of nodes with a 
parent-child relation

Applications:
n Organization charts
n File systems
n Programming environments
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Example: File System
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Tree Terminology
Root: node without parent (A)
Internal node: node with at least 
one child (A, B, C, F)
External node (a.k.a. leaf ): node 
without children (E, I, J, K, G, H, 
D)
Ancestors of a node: parent, 
grandparent, grand-grandparent, 
etc.
Depth of a node: number of 
ancestors
Height of a tree: maximum depth 
of any node (3)
Descendant of a node: child, 
grandchild, grand-grandchild, etc.
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q Subtree: tree consisting of a 
node and its descendants



Tree ADT
We can use positions to abstract 
nodes

Generic methods:
n integer size()
n boolean empty()

Accessor methods:
n position root()
n list<position> positions()

Position-based methods:
n position p.parent()
n list<position> p.children()
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Query methods:
n boolean p.isRoot()
n boolean p.isExternal()

Additional “update” methods 
may be defined by data 
structures implementing the 
Tree ADT

Remove the node at some 
position
Swap a parent and its 
specific child
Etc …



A linked structure for General Trees
One way of implementing a general tree
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Tree Traversal Algorithms



Traversal Computations
1. Depth?

2. Height?

3. Visit every nodes
n Preorder
n Postorder
n Inorder

These are the basic things to do for a given tree
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Example: ”du” command
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$> du –s .  Print the aggregate file sizes from the current directory 



1. Depth of a node
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Complexity? O(dp), worst-case O(n)



2. Height of a tree T: height1
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Equal to the maximum depth of its leaves
OK. Then, what about this algorithm?

Complexity?

Worst-case: O(n2)



Two Trees
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2. Height of a tree T: height2
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Why is height1 inefficient?

Worst-case: O(n)



3. Preorder Traversal
A traversal visits the nodes of a 
tree in a systematic manner
In a preorder traversal, a node is 
visited before its descendants 
Application: print a structured 
document
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1. Motivations References2. Methods

2.1 Stock
Fraud
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Scheme1.1 Greed 1.2 Avidity 2.3 Bank

Robbery
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Algorithm preOrder(v)
visit(v)
for each child w of v
preorder (w)



3. Postorder Traversal
In a postorder traversal, a node is 
visited after its descendants
Application: compute space used 
by files in a directory and its 
subdirectories
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Algorithm postOrder(v)
for each child w of v
postOrder (w)

visit(v)
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3. Inorder Traversal
In an inorder traversal a node is 
visited after its left subtree and 
before its right subtree
Application: draw a binary tree
n x(v) = inorder rank of v
n y(v) = depth of v
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Algorithm inOrder(v)
if ¬ v.isExternal()
inOrder(v.left())

visit(v)
if ¬ v.isExternal()
inOrder(v.right())
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Binary Tree



Binary Trees
q A binary tree is a tree with the 

following properties:
n Each internal node has at most 

two children (exactly two for 
proper binary trees)

n The children of a node are an 
ordered pair

q We call the children of an internal 
node left child and right child

q Alternative recursive definition: a 
binary tree is either
n a tree consisting of a single node, 

or
n a tree whose root has an ordered 

pair of children, each of which is 
a binary tree
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q Applications:
n arithmetic expressions
n decision processes
n searching
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Arithmetic Expression Tree
Binary tree associated with an arithmetic expression
n internal nodes: operators
n external nodes: operands

Example: arithmetic expression tree for the expression (2 ´ (a -
1) + (3 ´ b))
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Decision Tree
Binary tree associated with a decision process
n internal nodes: questions with yes/no answer
n external nodes: decisions

Example: dining decision
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Want a fast meal?

How about coffee? On expense account?

Starbucks Spike’s Al Forno Café Paragon

Yes No

Yes No Yes No



Properties of Proper Binary Trees
Notation
n number of nodes
e number of external nodes
i number of internal nodes
h height
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Properties:
n e = i + 1
n n = 2e - 1
n h £ i
n h £ (n - 1)/2
n e £ 2h

n h ³ log2 e
n h ³ log2 (n + 1) - 1



BinaryTree ADT
The BinaryTree ADT 
extends the Tree ADT, 
i.e., it inherits all the 
methods of the Tree ADT

Additional methods:
n position p.left()
n position p.right()

Update methods may be 
defined by data structures 
implementing the 
BinaryTree ADT

Proper binary tree: Each 
node has either 0 or 2 
children
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Evaluate Arithmetic Expressions
Specialization of a postorder 
traversal
n recursive method returning the 

value of a subtree
n when visiting an internal node, 

combine the values of the 
subtrees
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Algorithm evalExpr(v)
if v.isExternal()

return v.element()
else

x ¬ evalExpr(v.left())
y ¬ evalExpr(v.right())
à ¬ operator stored at v
return x à y+

´´
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5 1

3 2
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How to represent trees
in programming language?



Recall: Linked Structure for Trees
A node is represented by an object 
storing
n Element
n Parent node
n Sequence of children nodes

Node objects implement the Position 
ADT
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Linked Structure for Binary Trees
A node is represented by an object 
storing
n Element
n Parent node
n Left child node
n Right child node

Node objects implement the Position 
ADT
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Array-Based Representation of Binary Trees
Nodes are stored in an array A
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q Node v is stored at A[rank(v)]
n rank(root) = 1
n if node is the left child of parent(node), 

rank(node) = 2 × rank(parent(node))
n if node is the right child of parent(node), 

rank(node) = 2 × rank(parent(node)) + 1
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Questions?


