So Far

- Now, familiar with
 - Order of running time
 - Big-Oh function
 - Amortized analysis
- Vector and List
 - Storing elements in a linear fashion
- Position
 - Containers and Iterators

1

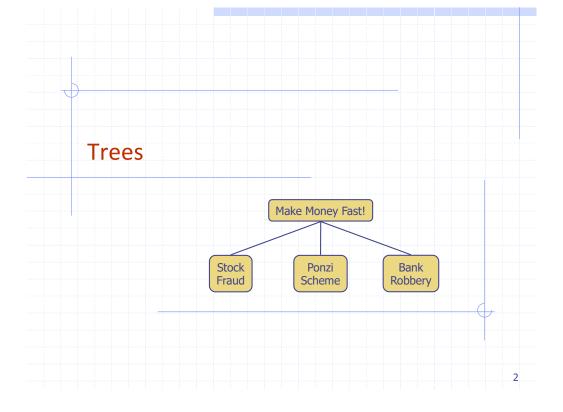
Summary

• Reading: Chapters 7.1, 7.2, 7.3

■ This chapter: Basics

■ Later in Chapter 10, we will cover:

10 Search Trees	423
10.1 Binary Search Trees	424
10.1.1 Searching	426
10.1.2 Update Operations	428
10.1.3 C++ Implementation of a Binary Search Tree	432
10.2 AVL Trees	438
10.2.1 Update Operations	440
10.2.2 C++ Implementation of an AVL Tree	446
10.3 Splay Trees	450
10.3.1 Splaying	450
10.3.2 When to Splay	454
10.3.3 Amortized Analysis of Splaying ★	
10.4 (2,4) Trees	
10.4.1 Multi-Way Search Trees	
10.4.2 Update Operations for (2,4) Trees	467
10.5 Red-Black Trees	
10.5.1 Update Operations	475
10.5.2 C++ Implementation of a Red-Black Tree	
10.6 Exercises	



What is a Tree?

A graph without cycles

In software systems, a tree is an abstract model of a hierarchical structure

Compared with "linear" data structures

 A tree consists of nodes with a parent-child relation

with a Europe

Sales Manufacturing R&D

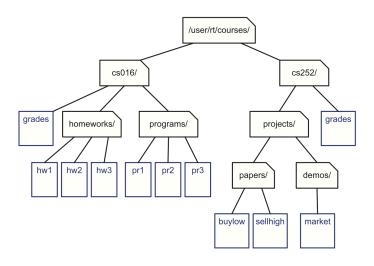
US International Laptops Desktops

Tope Asia Canada

Computers"R"Us

- Applications:
 - Organization charts
 - File systems
 - Programming environments

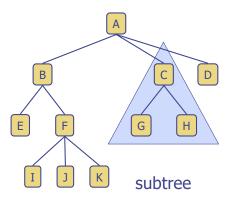
Example: File System



Tree Terminology

- Root: node without parent (A)
- Internal node: node with at least one child (A, B, C, F)
- External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Depth of a node: number of ancestors
- Height of a tree: maximum depth of any node (3)
- Descendant of a node: child, grandchild, grand-grandchild, etc.

 Subtree: tree consisting of a node and its descendants



Tree ADT

- We can use positions to abstract nodes
- Generic methods:
 - integer size()
 - boolean empty()
- Accessor methods:
 - position root()
 - list<position> positions()
- Position-based methods:
 - position p.parent()
 - list<position> p.children()

- Query methods:
 - boolean p.isRoot()
 - boolean p.isExternal()

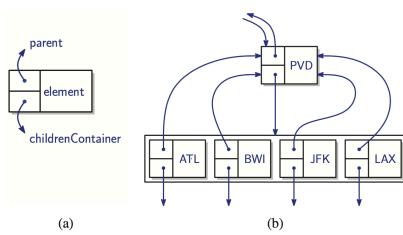
5

7

- Additional "update" methods may be defined by data structures implementing the Tree ADT
 - Remove the node at some position
 - Swap a parent and its specific child
 - ◆ Etc ...

A linked structure for General Trees

• One way of implementing a general tree

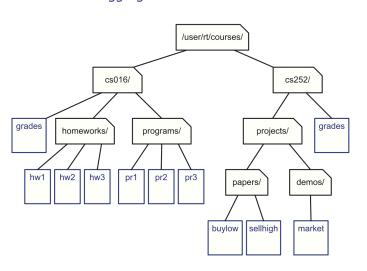


Tree Traversal Algorithms

9

Example: "du" command

\$> du -s . Print the aggregate file sizes from the current directory



Traversal Computations

- 1. Depth?
- 2. Height?
- 3. Visit every nodes
 - Preorder
 - Postorder
 - Inorder
- These are the basic things to do for a given tree

1. Depth of a node

10

Complexity? O(d_p), worst-case O(n)

2. Height of a tree T: height1

- Equal to the maximum depth of its leaves
- OK. Then, what about this algorithm?

Complexity?

$$O(n + \sum_{p} (1 + d_p))$$
 Worst-case: $O(n^2)$

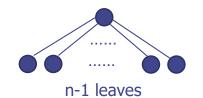
13

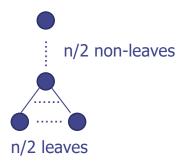
2. Height of a tree T: height2

Why is height1 inefficient?

$$O(\sum_{p}(1+c_p))$$
 Worst-case: $O(n)$

Two Trees





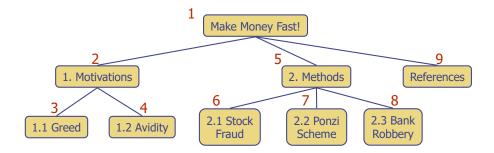
14

16

3. Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: print a structured document

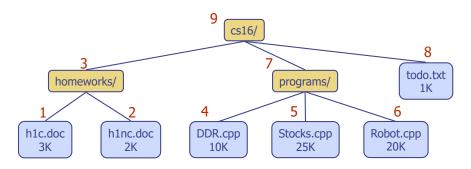
Algorithm preOrder(v)
visit(v)
for each child w of v
preorder (w)



3. Postorder Traversal

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

Algorithm postOrder(v)
for each child w of v
postOrder (w)
visit(v)



Binary Tree

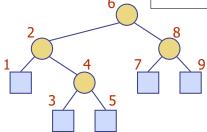
3. Inorder Traversal

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree
 - x(v) = inorder rank of v
 - y(v) = depth of v

Algorithm inOrder(v)

if ¬ v.isExternal()
 inOrder(v.left())
visit(v)

if ¬ v.isExternal()
 inOrder(v.right())

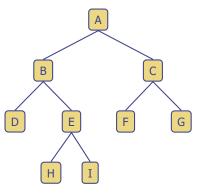


17

Binary Trees

- ☐ A binary tree is a tree with the following properties:
 - Each internal node has at most two children (exactly two for proper binary trees)
 - The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, or
 - a tree whose root has an ordered pair of children, each of which is a binary tree

- Applications:
 - arithmetic expressions
 - decision processes
 - searching

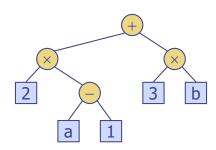


19

18

Arithmetic Expression Tree

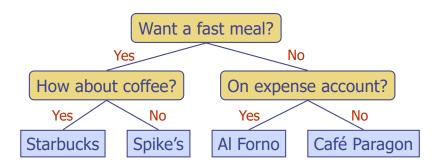
- Binary tree associated with an arithmetic expression
 - internal nodes: operators
 - external nodes: operands
- ◆ Example: arithmetic expression tree for the expression (2 × (a − 1) + $(3 \times b)$



21

Decision Tree

- Binary tree associated with a decision process
 - internal nodes: guestions with yes/no answer
 - external nodes: decisions
- Example: dining decision



Properties of Proper Binary Trees

- Notation
 - *n* number of nodes
 - e number of external nodes
 - *i* number of internal nodes
 - **h** height

Properties:

- e = i + 1
- = n = 2e 1
- $h \le i$
- $h \le (n-1)/2$
- $e \le 2^h$
- $h \ge \log_2 e$
- $h \ge \log_2 (n + 1) 1$

BinaryTree ADT

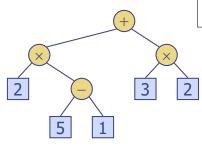
- The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT
- Additional methods:
 - position p.left()
 - position p.right()

- Update methods may be defined by data structures implementing the BinaryTree ADT
- Proper binary tree: Each node has either 0 or 2 children

22

Evaluate Arithmetic Expressions

- Specialization of a postorder traversal
 - recursive method returning the value of a subtree
 - when visiting an internal node, combine the values of the subtrees



Algorithm *evalExpr(v)* if v.isExternal() return v.element() else $x \leftarrow evalExpr(v.left())$ $y \leftarrow evalExpr(v.right())$ \Diamond \leftarrow operator stored at vreturn $x \diamond y$

How to represent trees in programming language?

25

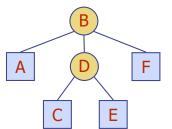
Recall: Linked Structure for Trees

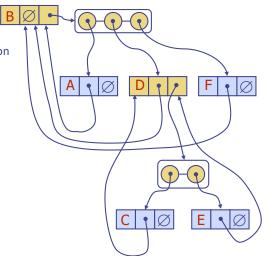
 A node is represented by an object storing

> Element Parent node

Sequence of children nodes

Node objects implement the Position ADT



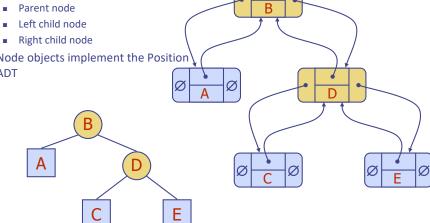


Linked Structure for Binary Trees

 A node is represented by an object storing

Element Parent node

 Node objects implement the Position ADT

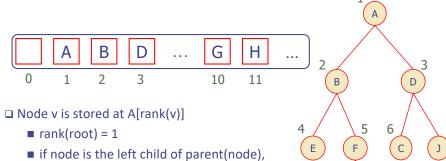


27

26

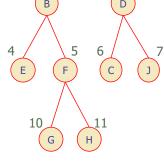
Array-Based Representation of Binary Trees

Nodes are stored in an array A



■ if node is the right child of parent(node), rank(node) = 2 · rank(parent(node)) + 1

rank(node) = 2 · rank(parent(node))



Questions?