So Far

Now, familiar with

- Order of running time
- Big-Oh function
- Amortized analysis

Vector and List

- Storing elements in a linear fashion

Position

- Containers and Iterators

Trees

Summary

Reading: Chapters 7.1, 7.2, 7.3

- This chapter: Basics
- Later in Chapter 10, we will cover:
10 Search Trees 423
10.1 Binary Search Trees 424
10.1.1 Searching 426
10.1.2 Update Operations 428
10.1.3 C++ Implementation of a Binary Search Tree 432
10.2 AVL Trees 438
10.2.1 Update Operations 440
10.2.2 C++ Implementation of an AVL Tree 446
10.3 Splay Trees 450
10.3.1 Splaying 450
10.3.2 When to Splay 454
10.3.3 Amortized Analysis of Splaying \star 456
$10.4(2,4)$ Trees 461
10.4.1 Multi-Way Search Trees 461
10.4.2 Update Operations for $(2,4)$ Trees 467
10.5 Red-Black Trees 473
10.5.1 Update Operations 475
10.5.2 C++ Implementation of a Red-Black Tree 488
10.6 Exercises 492

What is a Tree?

* A graph without cycles

In software systems, a tree is an abstract model of a hierarchical structure

- Compared with "linear" data structures

Applications:

- Organization charts
- File systems
- Programming environments

Example: File System

Tree Terminology

- Root: node without parent (A)
* Internal node: node with at least one child (A, B, C, F)
* External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)
* Ancestors of a node: parent, grandparent, grand-grandparent, etc.
* Depth of a node: number of ancestors
* Height of a tree: maximum depth of any node (3)
- Descendant of a node: child, grandchild, grand-grandchild, etc.
- Subtree: tree consisting of a node and its descendants)

Tree ADT

* We can use positions to abstract nodes
* Generic methods:
- integer size()
- boolean empty()
- Accessor methods:
- position root()
- list<position> positions()

Position-based methods:

- position p.parent()
- list<position> p.children()

Query methods:

- boolean p.isRoot()
- boolean p.isExternal()
* Additional "update" methods may be defined by data structures implementing the Tree ADT
* Remove the node at some position
* Swap a parent and its specific child
- Etc ...

A linked structure for General Trees

One way of implementing a general tree

(a)

(b)

Tree Traversal Algorithms

Traversal Computations

1. Depth?
2. Height?
3. Visit every nodes

- Preorder
- Postorder
- Inorder
* These are the basic things to do for a given tree

Example: "du" command

\$> du -s . Print the aggregate file sizes from the current directory

1. Depth of a node

```
int depth(const Tree& T, const Position& p) {
    if (p.isRoot())
        return 0; // root has depth 0
    else
        return 1 + depth(T, p.parent()); // 1 + (depth of parent)
}
```

Complexity? $\mathrm{O}\left(\mathrm{d}_{\mathrm{p}}\right)$, worst-case $\mathrm{O}(\mathrm{n})$

2. Height of a tree T: height1

Equal to the maximum depth of its leaves

- OK. Then, what about this algorithm?

```
int height1(const Tree\& T ) \{
        int \(h=0\);
        PositionList nodes \(=\) T.positions(); // list of all nodes
        for (Iterator \(\mathrm{q}=\) nodes.begin(); \(\mathbf{q}!=\) nodes.end(); ++q ) \{
            if ( \(\mathrm{q} \rightarrow\) isExternal())
            \(\mathrm{h}=\max \left(\mathrm{h}, \operatorname{depth}\left(\mathrm{T},{ }^{*} \mathrm{q}\right)\right)\); \(\quad / /\) get max depth among leaves
        \}
        return h;
```

\}

Complexity?

$$
O\left(n+\sum_{p}\left(1+d_{p}\right)\right) \quad \text { Worst-case: } O\left(n^{2}\right)
$$

Two Trees

n-1 leaves

2. Height of a tree T: height2

Why is height1 inefficient?

```
int height2(const Tree& T, const Position& p) {
    if (p.isExternal()) return 0; // leaf has height 0
    int h = 0;
    PositionList ch = p.children(); // list of children
    for (Iterator q = ch.begin(); q != ch.end(); + +q)
        h = max(h, height2(T, *q));
    return 1 + h;
    // 1 + max height of children
}
```


$O\left(\sum_{p}\left(1+c_{p}\right)\right)$ Worst-case: $O(n)$

3. Preorder Traversal

* A traversal visits the nodes of a tree in a systematic manner
* In a preorder traversal, a node is visited before its descendants
* Application: print a structured document

Algorithm preOrder(v)

visit(v)
for each child \boldsymbol{w} of \boldsymbol{v} preorder (w)

3. Postorder Traversal

* In a postorder traversal, a node is visited after its descendants
* Application: compute space used by files in a directory and its subdirectories

Algorithm postOrder(v) for each child \boldsymbol{w} of \boldsymbol{v} postOrder (w) $\operatorname{visit}(v)$

3. Inorder Traversal

* In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree
- $x(v)=$ inorder rank of v
- $y(v)=$ depth of v

Algorithm inOrder(v)

 if \neg voisExternal () inOrder(v.left())visit(v)
if \neg voisExternal ()
inOrder(v.right())

Binary Tree

Binary Trees

A binary tree is a tree with the following properties:

- Each internal node has at most two children (exactly two for proper binary trees)
- The children of a node are an ordered pair

We call the children of an internal node left child and right child
\square Alternative recursive definition: a binary tree is either

- a tree consisting of a single node, or
- a tree whose root has an ordered pair of children, each of which is a binary tree
- Applications:
- arithmetic expressions
- decision processes
- searching

Arithmetic Expression Tree

Binary tree associated with an arithmetic expression

- internal nodes: operators
- external nodes: operands
- Example: arithmetic expression tree for the expression (2×(a1) $+(3 \times b))$

Decision Tree

Binary tree associated with a decision process

- internal nodes: questions with yes/no answer
- external nodes: decisions
- Example: dining decision

Properties of Proper Binary Trees

Notation

\boldsymbol{n}	number of nodes
\boldsymbol{e}	number of external nodes
\boldsymbol{i}	number of internal nodes
\boldsymbol{h}	height

- Properties:
- $\boldsymbol{e}=\boldsymbol{i}+1$
- $n=2 e-1$
- $h \leq i$

BinaryTree ADT

* The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT
- Additional methods:
- position p.left()
- position p.right()
- Update methods may be defined by data structures implementing the BinaryTree ADT

Evaluate Arithmetic Expressions

* Specialization of a postorder traversal
- recursive method returning the value of a subtree
- when visiting an internal node, combine the values of the subtrees

```
Algorithm evalExpr(v)
    if \(v\) isExternal()
        return v.element()
    else
        \(x \leftarrow e v a l E x p r\left(v_{0} \operatorname{left}()\right)\)
        \(y \leftarrow\) evalExpr \((\nu . \operatorname{right}())\)
        \(\diamond \leftarrow\) operator stored at \(\boldsymbol{v}\)
        return \(x \diamond y\)
```


How to represent trees in programming language?

Recall: Linked Structure for Trees

- A node is represented by an object storing
- Element
- Parent node
- Sequence of children nodes
- Node objects implement the Position ADT

Linked Structure for Binary Trees

- A node is represented by an object
storing
- Element
- Parent node
- Left child node
- Right child node
- Node objects implement the Position ADT

Array-Based Representation of Binary Trees

Nodes are stored in an array A

