So Far

Now, familiar with

- Order of running time
- Big-Oh function
- Amortized analysis

Vector and List

Storing elements in a linear fashion

Position

Containers and Iterators

Summary

Reading: Chapters 7.1, 7.2, 7.3
This chapter: Basics
Later in Chapter 10, we will cover:
10 Search Trees
10.1 Binary Search Trees
10.1.1 Searching
10.1.2 Update Operations
10.1.3 C++ Implementation of a Binary Search Tree
10.2 AVL Trees
10.2.1 Update Operations
10.2.2 C++ Implementation of an AVL Tree
10.3 Splay Trees
10.3.1 Splaying
10.3.2 When to Splay
10.3.3 Amortized Analysis of Splaying \star \ldots \ldots \ldots
10.4 (2,4) Trees
10.4.1 Multi-Way Search Trees
10.4.2 Update Operations for (2,4) Trees
10.5 Red-Black Trees
10.5.1 Update Operations
10.5.2 C++ Implementation of a Red-Black Tree

What is a Tree?

10.6 Exercises

- Organization charts
- File systems
- Programming environments

Example: File System

Tree Terminology

- Root: node without parent (A)
- Internal node: node with at least one child (A, B, C, F)
- External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Depth of a node: number of ancestors
- Height of a tree: maximum depth of any node (3)
- Descendant of a node: child, grandchild, grand-grandchild, etc.

Subtree: tree consisting of a node and its descendants

Tree ADT

- We can use positions to abstract nodes
- Generic methods:
 - integer size()
 - boolean empty()
- Accessor methods:
 - position root()
 - list<position> positions()
- Position-based methods:
 - position p.parent()
 - list<position> p.children()

- Query methods:
 - boolean p.isRoot()
 - boolean p.isExternal()
- Additional "update" methods may be defined by data structures implementing the Tree ADT
 - Remove the node at some position
 - Swap a parent and its specific child
 - ◆ Etc ...

A linked structure for General Trees

8

7

Tree Traversal Algorithms

Traversal Computations

1. Depth?

2. Height?

- 3. Visit every nodes
 - Preorder
 - Postorder
 - Inorder

These are the basic things to do for a given tree

> du - s . Print the aggregate file sizes from the current directory

1. Depth of a node

```
Complexity? O(d<sub>p</sub>), worst-case O(n)
```

2. Height of a tree T: height1

Two Trees

2. Height of a tree T: height2

Why is height1 inefficient?

 $O(\sum_{p}(1+c_p))$ Worst-case: O(n)

15

3. Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: print a structured document

Algorithm *preOrder(v) visit(v)* for each child *w* of *v preorder (w)*

3. Postorder Traversal

3. Inorder Traversal

Binary Tree

Binary Trees

- A binary tree is a tree with the following properties:
 - Each internal node has at most two children (exactly two for proper binary trees)
 - The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, or
 - a tree whose root has an ordered pair of children, each of which is a binary tree

- □ Applications:
 - arithmetic expressions
 - decision processes
 - searching

19

Arithmetic Expression Tree

Binary tree associated with an arithmetic expression

- internal nodes: operators
- external nodes: operands

Example: arithmetic expression tree for the expression (2 × (a – 1) + (3 × b))

Decision Tree

- Binary tree associated with a decision process
 - internal nodes: questions with yes/no answer
 - external nodes: decisions

Example: dining decision

Properties of Proper Binary Trees

Notation
n number of nodes
e number of external nodes
i number of internal nodes
h height n = 2e - 1 $h \le i$ $h \le (n - 1)/2$ $e \le 2^h$ $h \ge \log_2 e$ $h \ge \log_2 (n + 1) - 1$

BinaryTree ADT

- The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT
- Additional methods:
 - position p.left()
 - position p.right()

- Update methods may be defined by data structures implementing the BinaryTree ADT
- Proper binary tree: Each node has either 0 or 2 children

Evaluate Arithmetic Expressions

- Specialization of a postorder traversal
 - recursive method returning the value of a subtree
 - when visiting an internal node, combine the values of the subtrees


```
Algorithm evalExpr(v)
```

if v.isExternal()

return v.element()

else

- *x* ← *evalExpr*(*v.left*())
- *y* ← *evalExpr*(*v.right*())
- $\diamond \leftarrow$ operator stored at *v*
- return $x \diamond y$

25

How to represent trees in programming language?

Recall: Linked Structure for Trees

- A node is represented by an object storing
 - Element
 - Parent node
 - Sequence of children nodes
- Node objects implement the Position ADT

Linked Structure for Binary Trees

Nodes are stored in an array A

29

Questions?