
1

Vector, List and Sequence

Overview and Reading
Reading: Chapters: 6.1, 6.2, and 6.3
A data structure that stores n elements in a linear order
n Called list or sequence

Didn’t we learn “array” and “linked list”?
n We are talking about more abstract ADTs than them

2

…

Three ADTs
Vector (also called Array List)
n Access each element using a notion of index in [0,n-1]
n Index of element e: the number of elements that are before e
n Typically we use the “index” (e.g., [])
n A more general ADT than “array”

List
n Not using an index to access, but use a node to access
n Insert a new element e before some “position” p
n A more general ADT than “linked list”

Sequence
n Can access an element as vector and list (using both index and position)

(Note) Can implement the above ADTs using various ways
n array, singly linked list, doubly linked list, circular linked list

3

4

Vectors (or Array Lists)

The Array List ADT
q The Vector or Array List

ADT extends the notion of
array by storing a sequence
of objects

qAn element can be
accessed, inserted or
removed by specifying its
index (number of elements
preceding it)

qAn exception is thrown if an
incorrect index is given
(e.g., a negative index)

Main methods:
n at(integer i): returns the

element at index i without
removing it

n set(integer i, object o): replace
the element at index i with o

n insert(integer i, object o): insert
a new element o to have index i

n erase(integer i): removes
element at index i

Additional methods:
n size()
n empty()

5

6

Applications of Array Lists
Direct applications
n Sorted collection of objects (elementary database)

Indirect applications
n Auxiliary data structure for algorithms
n Component of other data structures

Basically, every place where you can use “array”.

Array-based Implementation of Vector
Use an array A of size N
A variable n keeps track of the size of the array list (number of
elements stored)
Operation at(i) is implemented in O(1) time by returning A[i]
Operation set(i,o) is implemented in O(1) time by performing A[i]
= o

7

A
0 1 2 ni

Insertion
In operation insert(i, o), we need to make room for the new
element by shifting forward the n - i elements A[i], …, A[n - 1]
In the worst case (i = 0), this takes O(n) time

8

A
0 1 2 ni

A
0 1 2 ni

A
0 1 2 n

o
i

Element Removal
In operation erase(i), we need to fill the hole left by the removed
element by shifting backward the n - i - 1 elements A[i + 1], …,
A[n - 1]
In the worst case (i = 0), this takes O(n) time

9

A
0 1 2 ni

A
0 1 2 n

o
i

A
0 1 2 ni

Performance
In the array-based implementation of an array list:
n The space used by the data structure is O(n)
n size, empty, at and set run in O(1) time
n insert and erase run in O(n) time in worst case

If we use the array in a circular fashion, operations
insert(0, x) and erase(0, x) run in O(1) time

In an insert operation, when the array is full, instead of
throwing an exception, we can replace the array with a
larger one

10

Growable Array-based Array List
qIn an insert(o) operation

(without an index), we
always insert at the end

qWhen the array is full, we
replace the array with a
larger one

qHow large should the new
array be?
n Incremental strategy:

increase the size by a
constant c

n Doubling strategy: double
the size

For size n array, “re-grow”
operation requires n copies

11

Algorithm insert(o)
if t = S.length - 1 then

A ¬ new array of
size …

for i ¬ 0 to n-1 do
A[i] ¬ S[i]

S ¬ A
n ¬ n + 1
S[n-1] ¬ o

Which is better?: Incremental or Doubling
Comparison Method 1
n Given the current size of S = n
n Worst-case running time

w Incremental strategy: O(1)
w Doubling strategy: O(n)

Are you happy?
n Happy if your focus is really the worst-case
n Unhappy

w For doubling strategy, the total number of resizing array size
would be small

Can we reconsider the analysis method?
12

Which is better?: Incremental or Doubling
Comparison Method2
n Compute the total time T(n) needed to perform a series

of n insert(o) operations
n Assume that we start with an empty stack

represented by an array of size 1

We call amortized time of an insert operation the
average time taken by an insert over the series of
operations, i.e., T(n)/n
n This can be a fairer comparison in some cases

Amortized analysis (분할상환분석 in Wiki)
13

Incremental Strategy Analysis
We replace the old array with a new one k = n/c times
The total time T(n) of a series of n insert operations is
proportional to

n + c + 2c + 3c + 4c + … + kc =
n + c(1 + 2 + 3 + … + k) =

n + ck(k + 1)/2

Since c is a constant, T(n) is O(n + k2), i.e., O(n2)

The amortized time of an insert operation is O(n)

14

Doubling Strategy Analysis
We replace the old array with a new one
k = log2 n times

The total time T(n) of a series of n insert
operations is proportional to

n + 1 + 2 + 4 + 8 + …+ 2k =
n + 2k + 1 - 1 =
3n - 1

T(n) is O(n)

The amortized time of an insert
operation is O(1)

15

geometric series

1

2

1
4

8

Professor, I have a question
In “computing spans”,
why didn’t you do
amortized analysis?
Can we do it?
Is it meaningful?

Think about this!
n I am ready to discuss if

you get your version of
answer ready.

16

Algorithm spans2(X, n) #
S ¬ new array of n integers n
A ¬ new empty stack 1
for i ¬ 0 to n - 1 do n

while (¬A.empty() Ù
X[A.top()] £ X[i]) do n

A.pop() n
if A.empty() then n

S[i] ¬ i + 1 n
else

S[i] ¬ i - A.top() n
A.push(i) n

return S 1

Vectors in C++ STL

17

Difference between
resize() and reserve()?

Logistics
First programming assignment
n Deadline: Sep, 19th

Problem Solving Homework
n Deadline: Oct, 1st

You should keep reading the textbook

Sep 24th, 26th : No class
n Thanksgiving

18

Last Class
Vector and List

Vector
n Access elements by “index”
n Incremental vs. Doubling Strategy

w Amortized analysis

19

Lists

20

(Node) List ADT
The Node List ADT models
a sequence of positions
storing arbitrary objects
It establishes a
before/after relation
between positions
Generic methods:
n size(), empty()

qIterators:
n begin(), end()

qUpdate methods:
n insertFront(e),

insertBack(e)

n removeFront(),
removeBack()

qIterator-based update:
n insert(p, e)

n remove(p)

21

(Question) No method for accessing a specific node?
We will talk about this later

Implementation based on DLL (covered this)
A doubly linked list provides a
natural implementation of the
Node List ADT
Nodes implement Position and
store:
n element
n link to the previous node
n link to the next node

Special trailer and header nodes

22

prev next

elem

trailerheader nodes/positions

elements

node

Performance
In the implementation of the List ADT by means of a
doubly linked list
n The space used by a list with n elements is O(n)
n The space used by each position of the list is O(1)
n All the operations of the List ADT run in O(1) time

23

Lists in C++ STL

24

25

Containers, Iterators, and
Generic algorithms

26

Sorting: Vector and List
I want to find “yiyung” in Vector or List objects

vector<string> V(100);
list<string> L(100);
// some data insertion to V and L

//Design 1: different function
find_vector(&V);
find_list(&L);

//Design 2: function overloading
find(&V);
find(&L);

Do you like these? Why? Why not?

This is how we can do in C++

27

It is cool. But why is it cool?

Mysterious things

28

iterator? Looks like a “position” of vector or list. Hmm…..

Goal and Design Challenge
Lots of data structures (or classes in C++) that can contain
various types of elements
n “Container”
n Examples: Vector, List, deque, set, map, etc …

How are you going to design this concept?
n Again, from C++ STL designer’s perspective 29

Vector

List

………

algorithms

find,
max, min,
transform,
etc …

Position
abstraction

Position ADT
qThe Position ADT models the notion of place within a data

structure where a single object is stored
qIt gives a unified view of diverse ways of storing data, such

as
n a cell of an array
n a node of a linked list

q“A” method of accessing the element at position p:
n object p.element(): returns the element at position
n In C++ it is convenient to implement this as *p

n Operator overloading

Implemented as “iterator” in C++
30

Containers and Iterators in C++
An iterator abstracts the process of scanning through a collection
of elements
A container is an abstract data structure that supports element
access through iterators
n Data structures that support iterators
n Examples include Stack, Queue, Vector, List
n begin(): returns an iterator to the first element
n end(): return an iterator to an imaginary position just after the last

element

An iterator behaves like a pointer to an element
n *p: returns the element referenced by this iterator
n ++p: advances to the next element

Extends the concept of position by adding a traversal capability

31

Example codes again

32

Ah-ha, it’s an iterator!

Various Iterators
(standard) iterator: allows read-write access to elements

const iterator: provides read-only access to elements

bidirectional iterator: supports both ++p and –p

random-access iterator: supports both p+i and p-i

33

STL Iterators in C++
q Each STL container type C supports iterators:

n C::iterator – read/write iterator type
n C::const_iterator – read-only iterator type
n C.begin(), C.end() – return start/end iterators

q This iterator-based operators and methods:
n *p: access current element
n ++p, --p: advance to next/previous element
n C.assign(p, q): replace C with contents referenced by the iterator range [p,

q) (from p up to, but not including, q)
n insert(p, e): insert e prior to position p
n erase(p): remove element at position p
n erase(p, q): remove elements in the iterator range [p, q)

34

Back to Iterator: STL Iterator-based Functions

35

STL Containers and Algorithms

36

#include <algorithm>

STL Vector
STL deque

STL List

http://www.cplusplus.com/reference/algorithm/

Example Code

37

If you want to know more about iterators,
Please watch this video

Please
n I hate to answer the question “Is this included in the exam?”

38

https://www.youtube.com/watch?v=TxufBysSPK0

What should be your next question?
Can I implement iterators in C++, in addition to just knowing how
to use them?
n Someone like the C++ STL designer

Ch 6.2.3: Some level of explanation:
n Beyond the topic of this class

I will be happy to discuss this if you visit my office.

39

40

Sequences

41

Sequence ADT

The Sequence ADT is the
union of the Array List and
Node List ADTs
Elements accessed by
n Index, or
n Position

Generic methods:
n size(), empty()

ArrayList-based methods:
n at(i), set(i, o), insert(i, o),

erase(i)

List-based methods:
n begin(), end()
n insertFront(o),

insertBack(o)
n eraseFront(),

eraseBack()
n insert (p, o), erase(p)

Bridge methods:
n atIndex(i), indexOf(p)

42

Applications of Sequences

The Sequence ADT is a basic, general-purpose,
data structure for storing an ordered collection of
elements
Direct applications:
n Generic replacement for stack, queue, vector, or list
n small database (e.g., address book)

Indirect applications:
n Building block of more complex data structures

Questions?

