I

Vector, List and Sequence

\/ [[[[/
X7 7777

II' 'A
II".
()
(/
(4

N
N
N
3 N
N
i
>

Overview and Reading

@ Reading: Chapters: 6.1, 6.2, and 6.3
@ A data structure that stores n elements in a linear order
m Called list or sequence

@ Didn’t we learn “array” and “linked list”?
m We are talking about more abstract ADTs than them

4 N

Three ADTs

@ Vector (also called Array List)
m Access each element using a notion of index in [0,n-1]
m Index of element e: the number of elements that are before e
m Typically we use the “index” (e.g., [1)
m A more general ADT than “array”

@ List

m Not using an index to access, but use a node to access
m Insert a new element e before some “position” p

m A more general ADT than “linked list”
@ Sequence
m Can access an element as vector and list (using both index and position)

@ (Note) Can implement the above ADTs using various ways

m array, singly linked list, doubly linked list, circular linked list

€V

@

{

Vectors (or Array Lists)

V4

The Array List ADT

(J The Vector or Array List ¢ Main methods:
ADT extends the notion of m at(integeri): returns the
) element at index i without
array by storlng a sequence removing it
of objects = set(integer i, object o): replace

accessed. inserted or m insert(integer i, object 0): insert
’ a new element o to have index i

removed by specifying its = erase(integer i): removes

index (humber of elements element at index i
preceding it) @ Additional methods:
1 An exception is thrown if an = size()
= empty()

incorrect index is given
(e.g., a negative index)

Applications of Array Lists

@ Direct applications

m Sorted collection of objects (elementary database)
@ Indirect applications

m Auxiliary data structure for algorithms

s Component of other data structures

@ Basically, every place where you can use “array”.

Array-based Implementation of Vector

@ Use an array 4 of size N

@ Avariable n keeps track of the size of the array list (number of
elements stored)

@ Operation at(i) is implemented in O(1) time by returning A[i]

@ Operation set(i,0) is implemented in O(1) time by performing A[i]
=0

012 i n

Insertion

@ |n operation insert(i, 0), we need to make room for the new
element by shifting forward the n — i elements A[i], ..., A[n — 1]

@ In the worst case (i = 0), this takes O(n) time

A
012 i n
A AAAAN
A
012] n
A 0

012 i n

Element Removal

@ In operation erase(i), we need to fill the hole left by the removed
element by shifting backward the n —i — 1 elements A[i + 1], ...,
Aln — 1]

@ In the worst case (i = 0), this takes O(n) time

A 0

012 i n

JaVaTa'a's)

A

012 i n
A

012 i n

9
Performance

@ In the array-based implementation of an array list:
m The space used by the data structure is O(n)
m size, empty, at and set run in O(1) time
m insert and erase run in O(n) time in worst case

@ If we use the array in a circular fashion, operations
insert(0, x) and erase(0, x) run in O(1) time

@ In an insert operation, when the array is full, instead of
throwing an exception, we can replace the array with a
larger one

10

Growable Array-based Array List

1 In an insert(o) operation

(without an index), we Algorithm insert(o)
always insert at the end if £ = S.length — | then
JdWhen the array is full, we A < new array of
replace the array with a size ...
larger one for i < 0 to n—1 do
JHow large should the new Ali] < Sli]
array be? S A
m Incremental strategy: .’SQ'[(n_—lli]J:—l o
increase the size by a
constant ¢ # For size n array, “re-grow”
= Doubling strategy: double operation requires n copies

the size
11

Which is better?: Incremental or Doubling

@ Comparison Method 1
m Given the current size of S=n
m Worst-case running time

* Incremental strategy: O(1)
* Doubling strategy: O(n)

@ Are you happy?
m Happy if your focus is really the worst-case
s Unhappy

* For doubling strategy, the total number of resizing array size
would be small

@ Can we reconsider the analysis method?
12

Which is better?: Incremental or Doubling

@ Comparison Method2

m Compute the total time T(n) needed to perform a series
of n insert(o) operations

m Assume that we start with an empty stack
represented by an array of size 1

@ We call amortized time of an insert operation the
average time taken by an insert over the series of
operations, i.e., T(n)/n

m This can be a fairer comparison in some cases
@ Amortized analysis (=& & =24 in Wiki)

13

Incremental Strategy Analysis

@ We replace the old array with a new one k = n/c times

@ The total time T(n) of a series of n insert operations is
proportional to

n+c+2c+3ct4c+...+kc=
n+tcl+2+3+...+k)=
n + ck(k + 1)/2
Since cis a constant, T(n) is O(n + k?), i.e., O(n?)

@ The amortized time of an insert operation is O(n)

14

Doubling Strategy Analysis

@ We replace the old array with a new one

k =log, n times

@ The total time T(n) of a series of n insert 9EOMELriC series

operations is proportional to

n+1+2+4+8+ . +2k=

n+2ktl] =
3n—1
@® T(n)is O(n)

2

#® The amortized time of an insert

operation is O(1)

Professor, | have a que

15

stion

@ In “computing spans”,
why didn’t you do
amortized analysis?

@ Can we do it?

@ |s it meaningful?

@ Think about this!

m | am ready to discuss if
you get your version of
answer ready.

Algorithm spans2(X, n)

A < new empty stack
fori< Oton—1do
while (—A.empty() A

#
§ < new array of n integers n
1
n

X[A.top()] £ X[i]) do n
A.pop() n
if A.empty() then n
Sli]«i+1 n
else
S[i] < i— A.top() n
A.push(i) n

return § 1

16

Vectors in C++ STL

#include <vector> // provides definition of vector
using std::vector; // make vector accessible
vector<int> myVector(100); // a vector with 100 integers

vector(n): Construct a vector with space for n elements; if no argu-

ment is given, create an empty vector.
size(): Return the number of elements in V. D |ffe rence between
empty(): Return true if V is empty and false otherwise. resize() and rese rve() ?
resize(n): Resize V, so that it has space for n elements.

reserve(n):

operator|i]:

at(i):

front():
back():
push_back(e):

pop-back():

Request that the allocated storage space be large enough
to hold 7 elements.

Return a reference to the ith element of V.

Same as V[i], but throw an out_of_range exception if i is
out of bounds, that is, if i < 0 or i > V.size().

Return a reference to the first element of V.
Return a reference to the last element of V.

Append a copy of the element e to the end of V, thus
increasing its size by one.

Remove the last element of V, thus reducing its size by
one.

Logistics

@ First programming assignment
m Deadline: Sep, 19t

@ Problem Solving Homework
m Deadline: Oct, 1%t

@ You should keep reading the textbook

@ Sep 24th, 26t : No class
m Thanksgiving

17

18

Last Class

@ Vector and List

@ Vector

m Access elements by “index”
m Incremental vs. Doubling Strategy

¢+ Amortized analysis

19

Lists

V4

20

(Node) List ADT

@ The Node List ADT models []
a sequence of positions
storing arbitrary objects

@ It establishes a
before/after relation
between positions

@ Generic methods:

m size(), empty()
H

1 Update methods:

= insertFront(e),

insertBack(e)

m removeFront(),

removeBack()

(Question) No method for accessing a specific node?

We will talk about this later

Implementation based on DLL (covered this)

@ A doubly linked list provides a
natural implementation of the
Node List ADT

@ Nodes implement Position and
store:
= element
m link to the previous node
= link to the next node

@ Special trailer and header nodes

e

~

e

s

elements,

— e

Performance

In the implementation of the List ADT by means of a
doubly linked list

m The space used by a list with n elements is O(n)

m The space used by each position of the list is O(1)
m All the operations of the List ADT run in O(1) time

23

Lists in C++ STL

#include <list>

using std::list; // make list accessible
list<float> myList; // an empty list of floats

list(n): Construct a list with n elements; if no argument list is
given, an empty list is created.

size(): Return the number of elements in L.

(): Return true if L is empty and false otherwise.
front(): Return a reference to the first element of L.
back(): Return a reference to the last element of L.
push_front(e): Insert a copy of e at the beginning of L.
push_back(e): Insert a copy of e at the end of L.
pop_front(): Remove the fist element of L.
pop_back(): Remove the last element of L.

24

N
L/

Containers, lterators, and
Generic algorithms

V4

25

Sorting: Vector and List

@ | want to find “yiyung” in Vector or List objects

vector<string> V(100);
list<string> L(100);
// some data insertion to V and L

//Design 1: different function
find_vector(&V);
find_list(&L);

//Design 2: function overloading
find(&V);
find(&L);

Do you like these? Why? Why not?

26

This is how we can do in C++

O 0

< > ec str,; < > list st 5
vec_str.push_back(: list_str.push_back(
vec_str.push_back(: list_str.push_back(
vec_str.push_back(; list_str.push_back(

vec_str.push_back(5 list_str.push_back(
< >oe 11868 < >e -
= it =
find(vec_str.begin(), vec_str.end(), ; find(list_str.begin(), list_str.end(),
cout << SIS <SR dIlY cout << << *it << endl;

it it++;
cout << << *jt << endl; cout << << *jt << endl;

9; 0;

It is cool. But why is it cool?

27

Mysterious things

(@) 9)

< > ve HE < > list
vec_str.push_back(; list_str.push_back(
vec_str.push_back(; list_str.push_back(
vec_str.push_back(: list_str.push_back(
vec_str.push_back(2 list_str.push_back(

>l it; < >3 8
it = it =
find(vec_str.begin(), vec_str.end(), ; find(list_str.begin(), list_str.end(),
cout << << *jt << endl; cout << << *jt << endl;

it++; DRSS
cout << << *it << endl; cout << << *it << endl;

0; 0;

iterator? Looks like a “position” of vector or list. Hmm.....

28

Goal and Design Challenge

@ Lots of data structures (or classes in C++) that can contain
various types of elements

m “Container”
m Examples: Vector, List, deque, set, map, etc ...

JE— algorithms
4 I
Vector find,
—— .
|::> Position max, min,
)
List abstraction <:| transform,
\) etc ...
--------- \ /
@ How are you going to design this concept?
m Again, from C++ STL designer’s perspective 29
Position ADT

I The Position ADT models the notion of place within a data
structure where a single object is stored

11t gives a unified view of diverse ways of storing data, such
as

m acell of an array
= a node of a linked list

1 “A” method of accessing the element at position p:
m object p.element(): returns the element at position
m In C++ it is convenient to implement this as *p

M Operator overloading

@ Implemented as “iterator” in C++

30

Containers and Iterators in C++

@ An iterator abstracts the process of scanning through a collection
of elements

@ A container is an abstract data structure that supports element
access through iterators
m Data structures that support iterators
m Examples include Stack, Queue, Vector, List
m begin(): returns an iterator to the first element
m end(): return an iterator to an imaginary position just after the last
element
@ An iterator behaves like a pointer to an element
m *p:returns the element referenced by this iterator
m ++p: advances to the next element

@ Extends the concept of position by adding a traversal capability

31

Example codes again

(@) 9)

< > _ o
vec_str.push_back(b
vec_str.push_back()
vec_str.push_back()
vec_str.push_back()

< > list str;
list_str.push_back(
list_str.push_back(
list_str.push_back(
list_str.push_back(

< > < $98
it =

find(vec_str.begin(), vec_str.end(),
cout << << *jt << endl;

it =
find(list_str.begin(), list_str.end(),
cout << << *jt << endl;

AtSEi
cout << << *jt << endl;

g
cout << << *jt << endl;

0; 0;

Ah-ha, it's an iterator!

32

Various lterators

@ (standard) iterator: allows read-write access to elements

@ const iterator: provides read-only access to elements

@ bidirectional iterator: supports both ++p and —p

@ random-access iterator: supports both p+i and p-i

33

STL Iterators in C++

) Each STL container type C supports iterators:

C::iterator — read/write iterator type
C::const_iterator — read-only iterator type

C.begin(), C.end() — return start/end iterators

) This iterator-based operators and methods:

*p: access current element
++p, --p: advance to next/previous element

C.assign(p, q): replace C with contents referenced by the iterator range [p,
q) (from p up to, but not including, q)

insert(p, e): insert e prior to position p
erase(p): remove element at position p

erase(p, q): remove elements in the iterator range [p, q)

34

Back to Iterator: STL Iterator-based Functions

vector(p, q):

assign(p, q):

insert(p,e):

erase(p):

erase(p,q):

Construct a vector by iterating between p and g, copying
each of these elements into the new vector.

Delete the contents of V, and assigns its new contents
by iterating between p and g and copying each of these
elements into V.

Insert a copy of e just prior to the position given by iter-
ator p and shifts the subsequent elements one position to
the right.

Remove and destroy the element of V at the position
given by p and shifts the subsequent elements one po-

sition to the left.

Iterate between p and ¢, removing and destroying all
these elements and shifting subsequent elements to the

left to fill the gap.

clear(): Delete all these elements of V.

STL Containers and Algorithms

#include <algorithm>

sort(p,q):

random _shuffle(p,q):

reverse(p, q):
find(paq7e):

min_element(p, q):

max_element(p, q):

for_each(p,q, f):

Sort the elements in the range from p to g in ascending
order. It is assumed that less-than operator (“<”) is de-
fined for the base type.

Rearrange the elements in the range from p to g in ran-
dom order.

Reverse the elements in the range from p to q.

Return an iterator to the first element in the range from p
to g that is equal to e; if e is not found, g is returned.

Return an iterator to the minimum element in the range
from p to g.

Return an iterator to the maximum element in the range
from p to g.

Apply the function f the elements in the range from p to
q.

http://www.cplusplus.com/reference/algorithm/

35

_—

STL Vector
STL deque

~ STL List

36

Example Code

#include <cstdlib> // provides EXIT_SUCCESS

#include <iostream> // 1/O definitions
#include <vector> // provides vector
#include <algorithm> // for sort, random_shuffle
using namespace std; // make std:: accessible

int main () {
int a[] = {17, 12, 33, 15, 62, 45};

vector<int> v(a, a + 6); // v: 17 12 33 15 62 45
cout << v.size() << endl; // outputs: 6
v.pop_back(); // v: 17 12 33 15 62
cout << v.size() << endl; // outputs: 5
v.push_back(19); // v: 17 12 33 15 62 19
cout << v.front() << " " << v.back() << endl; // outputs: 17 19
sort(v.begin(), v.begin() + 4); // v: (12 15 17 33) 62 19
v.erase(v.end() — 4, v.end() — 2); // v: 12 15 62 19

cout << v.size() << endl; // outputs: 4

char b[] — {’b’, ryr gy, ’0’};

vector<char> w(b, b + 5); //w:bravo
random_shuffle(w.begin(), w.end()); //w:ovrab
w.insert(w.begin(), ’s?); //wisovrab

for (vector<char>:iterator p = w.begin(); p != w.end(); ++p)

cout << *p << " M, // outputs: sovrab
cout << endl;
return EXIT_SUCCESS;

37

If you want to know more about iterators,

@ Please watch this video

Lecture Slides for the C++ Programming Language
(Version: 2016-01-18)

Current with the C++14 Standard

Michael D. Adams

Department of Electrical and Computer Engineering
University of Victoria
Victoria, British Columbia, Canada

B university
of Victoria

For additional information and resources related to these lecture slides (including errata and lecture
videos covering the material on many of these slides), please visit:
http://www.ece.uvic.ca/~mdadams/cppbook

If you like these lecture slides, please show your support by posting a review of them on Google Play:
https://play.google.com/store/search?q=Michael$20D%20Adams$20C%2B%2B&c=books

https://www.youtube.com/watch?v=TxufBysSPKO

@ Please

m | hate to answer the question “Is this included in the exam?”

38

What should be your next question?

Can |l implement iterators in C++, in addition to just knowing how
to use them?

m Someone like the C++ STL designer
@ Ch 6.2.3: Some level of explanation:
m Beyond the topic of this class
@ | will be happy to discuss this if you visit my office.

ERNEST HEMMINGWAY

The Old Man
and the Sea

39

NI

Sequences

N

40

Sequence ADT

@ The Sequence ADT is the
union of the Array List and
Node List ADTs

@ Elements accessed by

= Index, or
m Position
@ Generic methods:
m size(), empty()
@ ArraylList-based methods:

m at(i), set(i, o), insert(i, 0),
erase(i)

@ List-based methods:
m begin(), end()

m insertFront(o),
insertBack(o)

m eraseFront(),
eraseBack()

m insert (p, 0), erase(p)

@ Bridge methods:
m atindex(i), indexOf(p)

Applications of Sequences

@ The Sequence ADT is a basic, general-purpose,

data structure for storing an ordered collection of

elements
@ Direct applications:

m Generic replacement for stack, queue, vector, or list

m small database (e.g., address book)

@ Indirect applications:

m Building block of more complex data structures

41

42

Questions?

