
What should we learn from this class?
Not Knowledge
n How to use C++
n How to use C++ STL
n Understand the concept of stack, shortest-path algorithms, 

etc
n ”I know many things” – not important

But Design
n Can you design something like C++ STL?
n Are you able to develop your algorithms that are efficient?
n Ask: what is missing in you, when you make all the concepts, 

methods, new algorithms in the textbook?
n “I can design something” – Very important

1



Queues

2



Overview and Reading
Reading: Chapters: 5.2 and 5.3

First-In-First-Out Data Structure

3



The Queue ADT (§5.2)
The Queue ADT stores arbitrary 
objects
Insertions and deletions follow 
the first-in first-out scheme
Insertions are at the rear of the 
queue and removals are at the 
front of the queue
Main queue operations:
n enqueue(object): inserts an 

element at the end of the 
queue

n dequeue(): removes the 
element at the front of the 
queue

Auxiliary queue operations:
n object front(): returns the 

element at the front without 
removing it

n integer size(): returns the 
number of elements stored

n boolean empty(): indicates 
whether no elements are stored

Exceptions
n Attempting the execution of 

dequeue or front on an empty 
queue throws an QueueEmpty

4



Queue Interface in C++

C++ interface 
corresponding to our 
Queue ADT
Requires the definition 
of exception 
QueueEmpty

Often dequeue returns an 
object

5

template <typename E>
class Queue {
public:

int size() const;
bool empty() const;
const E& front() const

throw(QueueEmpty);
void enqueue (const E& e);
void dequeue()

throw(QueueEmpty);
};



Example
Operation Output Q 
enqueue(5) – (5)
enqueue(3) – (5, 3)
dequeue() – (3)
enqueue(7) – (3, 7)
dequeue() – (7)
front() 7 (7)
dequeue() – ()
dequeue() “error” ()
empty() true ()
enqueue(9) – (9)
enqueue(7) – (9, 7)
size() 2 (9, 7)
enqueue(3) – (9, 7, 3)
enqueue(5) – (9, 7, 3, 5)
dequeue() – (7, 3, 5)

6



Applications of Queues
Direct applications
n Waiting lists, bureaucracy
n Access to shared resources (e.g., printer)
n Multiprogramming

Indirect applications
n Auxiliary data structure for algorithms
n Component of other data structures

7



Application: Round Robin Schedulers
We can implement a round robin scheduler using a queue Q by 
repeatedly performing the following steps:

1. e = Q.front(); Q.dequeue()
2. Service element e
3. Q.enqueue(e)

8

Shared 
Service

Queue

EnqueueDequeue



Array-based Queue
Use an array of size N in a circular fashion
Three variables keep track of the front and rear
f index of the front element
r index immediately past the rear element
n number of items in the queue

9

Q
0 1 2 rf

normal configuration

Q
0 1 2 fr

wrapped-around configuration



Queue Operations
Use n to determine size and emptiness

10

Algorithm size()
return n

Algorithm empty()
return (n = 0)

Q
0 1 2 rf

Q
0 1 2 fr



Queue Operations (cont.)
Operation enqueue throws 
an exception if the array is 
full
This exception is 
implementation-
dependent

11

Algorithm enqueue(o)
if size() = N - 1 then

throw QueueFull
else 

Q[r] ¬ o
r ¬ (r + 1) mod N
n ¬ n + 1

Q
0 1 2 rf

Q
0 1 2 fr



Queue Operations (cont.)
Operation dequeue throws 
an exception if the queue is 
empty
This exception is specified 
in the queue ADT

12

Algorithm dequeue()
if empty() then

throw QueueEmpty
else

f ¬ (f + 1) mod N
n ¬ n - 1

Q
0 1 2 rf

Q
0 1 2 fr



Queue in C++ STL

13



Double-Ended Queues (§5.3)
Pronounce “deck”

14



DEQUE in C++ STL

15



How to implement DEQUE?
Question
n Which (elementary) data structure are you going to 

use to implement DEQUE?
w Array, singly linked list, doubly linked list, circular linked list

n What happens if you use others?
Deque by a doubly linked list

16



Questions?


