Stacks

14 <4 -3 %2+ 7

|

Bk
/]

1

HEE
NnE

1

Overview and Reading

@ Reading: Chapter 5.1

@ Last-In-First-Out Data Structure

Input sequence 1, 2,3, 4 = Output sequence 4, 3,2, 1

][]
NoE

S

Example: Algorithm on an Example Expression

Operator < has lower
precedence than +/-

The Stack ADT

@ The Stack ADT stores

arbitrary objects

@ Insertions and deletions

follow the last-in first-out
scheme

@ Think of a spring-loaded

plate dispenser

@ Main stack operations:

= push(object): inserts an
element

= object pop(): removes the
last inserted element

@ Auxiliary stack operations:

m object top(): returns the last
inserted element without
removing it

m integer size(): returns the
number of elements stored

m boolean empty(): indicates
whether no elements are stored

Stack Interface in C++ Applications of Stacks

() C++ interface corresponding template <t E> (I Direct applications
to our Stack ADT c?;nsﬂ aSti\ckyr{)ename m Page-visited history in a Web browser
public: » Undo sequence in a text editor

() Uses an exception class m Chain of method calls in the C++ run-time system

int size() const;

StackEmpt
o bool empty() const;
_ o const E& top() const (JIndirect applications
I Different from the built-in throw(StackEmpty); » Auxiliary data structure for algorithms
C++ STL class stack . .
void push(const E& e); m Component of other data structures
void pop() throw(StackEmpty);
}
() STL: Standard Template
Library
5
Example: C++ Run-Time Stack Example Implementation: Array-based Stack
J The C++ run-time system keeps track of @ A simple way of implementing the Stack ADT uses an array
the chain of active functions with a stack ;
main() {
0 When a function is called, the system int |.=_ g bar @ We add elements from left to right
pushes on the stack a frame containing foo(i); PC=1
= Localvariables and return value) m=6 @ Avariable keeps track of the index of the top element
= Program counter, keeping track of the Lo
statement being executed foo(int j) { f
nt k¢ 00
intk; PC = 3
[When the function ends, its frame is k =j+1; j=5
popped from the stack and control is . _
passed to the function on top of the stack ;Jar(k)’ S= S \ tee \
. _ main 01 2 _
Ll Allows for recursion bar(lnt m){ PC = 2 t N-1
L] PC: Program Counter } =

Example Implementation: Array-based Stack

@ Asimple way of Algorithm size():

implementing the Stack ADT return 7 + 1
@ Add elements from left to Algorithm empty():
right return (1 < 0)

Algorithm top():
if empty() then
throw StackEmpty exception
return S[t]
Algorithm push(e):

@ Avariable keeps track of
the index of the top
element

@ The array storing the stack
elements may become full if size() = N then

= A push operation will then throw StackFull exception
throw a StackFull exception t—r+1

m Limitation of the array-based S[t] e
implementation Algorithm pop():

= Not intrinsic to the Stack ADT if empty() then

throw StackEmpty exception

t—t—1
9
Array-based Stack in C++
template <typename E> void pop() {
class ArrayStack { if (empty()) throw StackEmpty
private: (“Pop from empty stack”);
E*S; t--;
int cap; }
intt; void push(const E& e) {
public: if (size() == cap) throw
StackFull(*Push to full stack”);
ArrayStack(int c) : S[++t]=¢;
S(new E[c]), cap(c), t(-1) {} }
.. (other methods of Stack interface)

11

Performance and Limitations

@ Performance

m Let n be the number of elements in the stack

m The space used is O(n)

m Each operation runs in time O(1)

@ Limitations

m The maximum size of the stack must be defined a priori and

cannot be changed

m Trying to push a new element into a full stack causes an

implementation-specific exception

@ Linked-list based Stack in the text (Chapter 5.1.5)

Example use in C++

10

ArrayStack<int> A;

A.push(7);

A.push(13);

cout << A.top() << endl; A.pop();
A.push(9);

cout << A.top() << endl;

cout << A.top() << endl; A.pop();
ArrayStack<string> B(10);
B.push("Bob");

B.push("Alice");

cout << B.top() << endl; B.pop();
B.push("Eve");

| * indicates top

IA=[), sizg=0"
IIA=[7%], size =1
IIA=17,13"], size =2

Il A =[7*], outputs: 13
IIA=17,9%, size =2
IIA=17,9%], outputs: 9

Il A =[7*], outputs: 9
IIB=]],size=0

/I B = [Bob*], size =1

/I B = [Bob, Alice*], size = 2
/I B = [Bob*], outputs: Alice
/I B = [Bob, Eve*), size = 2

12

Stack in C++ STL

#include <stack>
using std::stack;
stack<int> myStack;

// make stack accessible
// a stack of integers

size(): Return the number of elements in the stack.
empty(): Return true if the stack is empty and false otherwise.
push(e): Push e onto the top of the stack.

pop(): Pop the element at the top of the stack.

top(): Return a reference to the element at the top of the stack.

13

Example: Computing Spans

L Given an an array X, the span

S[i] of X[i] is the maximum 7 -
number of consecutive 6 1 DI
elements X[j] immediately 5 7
preceding X[i] and such that 4
X[j] < XTi] Bl I
<
2 _
L Spans have applications to 1 1
financial analysis 0 -
m E.g., stock at 52-week high 0 1 2 3 4
X |63 512
S |1]1]2

15

Example: Parentheses Matching

A Each “(”, “{”, or “[” must be paired with a matching “)”, “Y,
or “”

= correct: ()((

= correct: ((()

= incorrect:)

(

(

MO}
CXAOD:
MO}
D}

(

((
= incorrect: ({[
= incorrect:

4 Good Programmer

= Someone who thinks that stack is a good data structure
for the above task

14

Algorithm: spanl

<
— | o
w
W
S

@ Loopoveri=0,1,2,3,4
@ For each i, compute S[i]. How?

m From X[i] downward on, compute the number of elements
which are consecutively smaller than X[i]

16

Quadratic Algorithm

Algorithm spansI(X, n)

Input array X of n integers
Output array S of spans of X
S < new array of n integers
fori<—Oton—1do

s« 1

while s <i A X[i — 5] < X[i]

s« s+ 1

S[i] < s

return §

#
n
n
n

1+2+..+(n-1)
I+2+..+(n—-1)

n
1

@ Algorithm spanslI runs in O(n?) time

Computing Spans with a Stack

L) We keep in a stack the indices
of the elements visible when
“looking back”

L) We scan the array from left to
right
m Leti be the current index

m We pop indices from the stack
until we find index j such that X[i]
<X[jl

m WesetS[i]«<i—j

= We push x onto the stack

Al

01 2345¢67

Algorithm: span2

toj toj top top top

P P 1
=11

X 1631452
S|1]1]2]3]1

From index 3 to 1,
Arem midexthaioX{4] is the

Algorithm spans2(X, n)
S < new array of n integers
A < new empty stack
fori<—Oton—1do
while (—A4.empty() A

X[A.top()] < X[i]) do

A.pop()

if A.empty() then
S[i]«i+1

else
S[i] < i — A.top()

A.push(i)

return S

I"apmnseeatiat KRS the
“consecutive largest”.
So, please check X[0]
Sitesldlase check X[0] 4
after it
B
0
17 Stack for “index”

Linear Algorithm

@ Each index of the array

m [s pushed into the stack
exactly one

m Is popped from the stack
at most once

@ The statements in the
while-loop are executed

at most n times

@ Algorithm spans2 runs
in O(n) time

19

18

Algorithm spans2(X, n) #

S < new array of n integers n

A < new empty stack 1

fori<Oton—1do n
while (=A4.empty() A

X[A.top()] £ X[i]) do n
A.pop() n

if A.empty() then n
S[i]«i+1 n

else

S[i] < i — A.top() n
A.push(i) n
return S 1

20

Questions?

