
Stacks

1

Example: Algorithm on an Example Expression

2

14 ≤ 4 – 3 * 2 + 7 Operator ≤ has lower
precedence than +/–

–
≤14

4

*3
–
≤14

4

2
*3
–
≤14

4

+

2
*3
–
≤14

4

+

6
–
≤14

4 +
≤14

-2

$
7

+
≤14

-2

$
F$

≤14
5

Overview and Reading
Reading: Chapter 5.1

Last-In-First-Out Data Structure

3

The Stack ADT
The Stack ADT stores
arbitrary objects
Insertions and deletions
follow the last-in first-out
scheme
Think of a spring-loaded
plate dispenser
Main stack operations:
n push(object): inserts an

element
n object pop(): removes the

last inserted element

Auxiliary stack operations:
n object top(): returns the last

inserted element without
removing it

n integer size(): returns the
number of elements stored

n boolean empty(): indicates
whether no elements are stored

4

Stack Interface in C++
qC++ interface corresponding

to our Stack ADT

qUses an exception class
StackEmpty

qDifferent from the built-in
C++ STL class stack

q STL: Standard Template
Library

5

template <typename E>
class Stack {
public:

int size() const;
bool empty() const;
const E& top() const

throw(StackEmpty);
void push(const E& e);
void pop() throw(StackEmpty);

}

Applications of Stacks
qDirect applications

n Page-visited history in a Web browser
n Undo sequence in a text editor
n Chain of method calls in the C++ run-time system

qIndirect applications
n Auxiliary data structure for algorithms
n Component of other data structures

6

Example: C++ Run-Time Stack
q The C++ run-time system keeps track of

the chain of active functions with a stack

q When a function is called, the system
pushes on the stack a frame containing
n Local variables and return value
n Program counter, keeping track of the

statement being executed

q When the function ends, its frame is
popped from the stack and control is
passed to the function on top of the stack

q Allows for recursion

q PC: Program Counter

7

main() {
int i = 5;
foo(i);
}

foo(int j) {
int k;
k = j+1;
bar(k);
}

bar(int m) {
…
}

bar
PC = 1
m = 6

foo
PC = 3
j = 5
k = 6

main
PC = 2
i = 5

Example Implementation: Array-based Stack
A simple way of implementing the Stack ADT uses an array

We add elements from left to right

A variable keeps track of the index of the top element

8

Example Implementation: Array-based Stack
A simple way of
implementing the Stack ADT
Add elements from left to
right
A variable keeps track of
the index of the top
element
The array storing the stack
elements may become full
n A push operation will then

throw a StackFull exception
n Limitation of the array-based

implementation
n Not intrinsic to the Stack ADT

9

Performance and Limitations
Performance
n Let n be the number of elements in the stack
n The space used is O(n)
n Each operation runs in time O(1)

Limitations
n The maximum size of the stack must be defined a priori and

cannot be changed
n Trying to push a new element into a full stack causes an

implementation-specific exception

Linked-list based Stack in the text (Chapter 5.1.5)
10

Array-based Stack in C++

11

template <typename E>
class ArrayStack {
private:

E* S; // array holding the stack
int cap; // capacity
int t; // index of top element

public:
// constructor given capacity
ArrayStack(int c) :

S(new E[c]), cap(c), t(-1) { }

void pop() {
if (empty()) throw StackEmpty

(“Pop from empty stack”);
t--;

}
void push(const E& e) {

if (size() == cap) throw
StackFull(“Push to full stack”);

S[++ t] = e;
}
… (other methods of Stack interface)

Example use in C++

12

ArrayStack<int> A; // A = [], size = 0
A.push(7); // A = [7*], size = 1
A.push(13); // A = [7, 13*], size = 2
cout << A.top() << endl; A.pop(); // A = [7*], outputs: 13
A.push(9); // A = [7, 9*], size = 2
cout << A.top() << endl; // A = [7, 9*], outputs: 9
cout << A.top() << endl; A.pop(); // A = [7*], outputs: 9
ArrayStack<string> B(10); // B = [], size = 0
B.push("Bob"); // B = [Bob*], size = 1
B.push("Alice"); // B = [Bob, Alice*], size = 2
cout << B.top() << endl; B.pop(); // B = [Bob*], outputs: Alice
B.push("Eve"); // B = [Bob, Eve*], size = 2

* indicates top

Stack in C++ STL

13

Example: Parentheses Matching
qEach “(”, “{”, or “[” must be paired with a matching “)”, “}”,

or “[”
n correct: ()(()){([()])}
n correct: ((()(()){([()])}
n incorrect:)(()){([()])}
n incorrect: ({[])}
n incorrect: (

Good Programmer
n Someone who thinks that stack is a good data structure

for the above task

14

Example: Computing Spans
qGiven an an array X, the span
S[i] of X[i] is the maximum
number of consecutive
elements X[j] immediately
preceding X[i] and such that
X[j] £ X[i]

q Spans have applications to
financial analysis
n E.g., stock at 52-week high

15

6 3 4 5 2
1 1 2 3 1

X
S

0
1
2
3
4
5
6
7

0 1 2 3 4

Algorithm: span1

Loop over i = 0, 1, 2, 3, 4

For each i, compute S[i]. How?
n From X[i] downward on, compute the number of elements

which are consecutively smaller than X[i]

16

6 3 4 5 2
1 1 2 3 1

X
S

i

Quadratic Algorithm

17

Algorithm spans1(X, n)
Input array X of n integers
Output array S of spans of X #
S ¬ new array of n integers n
for i ¬ 0 to n - 1 do n

s ¬ 1 n
while s £ i Ù X[i - s] £ X[i] 1 + 2 + …+ (n - 1)

s ¬ s + 1 1 + 2 + …+ (n - 1)
S[i] ¬ s n

return S 1

Algorithm spans1 runs in O(n2) time

Algorithm: span2

18

6 3 4 5 2X
S 1

0

1

1

2

2

3

3

1

4

top
1

top
2

top
3

top
1

top

Stack for “index”

Algorithm spans2(X, n)
S ¬ new array of n integers
A ¬ new empty stack
for i ¬ 0 to n - 1 do

while (¬A.empty() Ù
X[A.top()] £ X[i]) do

A.pop()
if A.empty() then

S[i] ¬ i + 1
else

S[i] ¬ i - A.top()
A.push(i)

return S

From index 2 to 1,
I am sure that X[2] is the
“consecutive largest”.

So, please check X[0]
after it

From index 3 to 1,
I am sure that X[4] is the
“consecutive largest”.

So, please check X[0]
after it

Computing Spans with a Stack

qWe keep in a stack the indices
of the elements visible when
“looking back”

qWe scan the array from left to
right
n Let i be the current index
n We pop indices from the stack

until we find index j such that X[i]
< X[j]

n We set S[i]¬ i - j
n We push x onto the stack

19

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

Linear Algorithm

20

Algorithm spans2(X, n) #
S ¬ new array of n integers n
A ¬ new empty stack 1
for i ¬ 0 to n - 1 do n

while (¬A.empty() Ù
X[A.top()] £ X[i]) do n

A.pop() n
if A.empty() then n

S[i] ¬ i + 1 n
else

S[i] ¬ i - A.top() n
A.push(i) n

return S 1

Each index of the array
n Is pushed into the stack

exactly one
n Is popped from the stack

at most once

The statements in the
while-loop are executed
at most n times

Algorithm spans2 runs
in O(n) time

Questions?

