Stacks

Example: Algorithm on an Example Expression

Overview and Reading

Reading: Chapter 5.1

Last-In-First-Out Data Structure

Input sequence 1, 2,3,4 \ddagger Output sequence $4,3,2,1$

The Stack ADT

- The Stack ADT stores arbitrary objects
* Insertions and deletions follow the last-in first-out scheme
* Think of a spring-loaded plate dispenser
Main stack operations:
- push(object): inserts an element
- object pop(): removes the last inserted element

Auxiliary stack operations:

- object top(): returns the last inserted element without removing it
- integer size(): returns the number of elements stored
- boolean empty(): indicates whether no elements are stored

Stack Interface in C++

\square C++ interface corresponding to our Stack ADT
\square Uses an exception class
StackEmpty
\square Different from the built-in C++ STL class stack
\square STL: Standard Template
 Library

Applications of Stacks

\square Direct applications

- Page-visited history in a Web browser
- Undo sequence in a text editor
- Chain of method calls in the C++ run-time system
\square Indirect applications
- Auxiliary data structure for algorithms
- Component of other data structures

Example: C++ Run-Time Stack

\square The C++ run-time system keeps track of the chain of active functions with a stack
\square When a function is called, the system pushes on the stack a frame containing

- Local variables and return value
- Program counter, keeping track of the statement being executed
\square When the function ends, its frame is popped from the stack and control is passed to the function on top of the stack
\square Allows for recursion
\square PC: Program Counter

```main() { int i = 5; foo(i); }```	bar   $P C=1$   $m=6$
$\begin{aligned} & \text { foo(int j) \{ } \\ & \text { int k; } \\ & \text { k }=j+1 ; \\ & \operatorname{bar}(\mathrm{k}) ; \\ & \} \end{aligned}$	foo $P C=3$ $j=5$ $k=6$
$\operatorname{bar}($ int m) \{	$\begin{aligned} & \text { main } \\ & P C=2 \\ & i=5 \end{aligned}$

## Example Implementation: Array-based Stack

- A simple way of implementing the Stack ADT uses an array
* We add elements from left to right
* A variable keeps track of the index of the top element



## Example Implementation: Array-based Stack

- A simple way of implementing the Stack ADT
* Add elements from left to right
- A variable keeps track of the index of the top element
* The array storing the stack elements may become full
- A push operation will then throw a StackFull exception
- Limitation of the array-based implementation
- Not intrinsic to the Stack ADT

```
Algorithm size():
 return \(t+1\)
Algorithm empty():
 return \((t<0)\)
Algorithm top():
 if empty () then
 throw StackEmpty exception
 return \(S[t]\)
Algorithm push (e):
 if size ()\(=N\) then
 throw StackFull exception
 \(t \leftarrow t+1\)
 \(S[t] \leftarrow e\)
Algorithm pop():
 if empty() then
 throw StackEmpty exception
 \(t \leftarrow t-1\)
```


## Performance and Limitations

## Performance

- Let $\boldsymbol{n}$ be the number of elements in the stack
- The space used is $\boldsymbol{O}(\boldsymbol{n})$
- Each operation runs in time $\boldsymbol{O}(1)$


## - Limitations

- The maximum size of the stack must be defined a priori and cannot be changed
- Trying to push a new element into a full stack causes an implementation-specific exception


## Array-based Stack in C++

```
template <typename E>
class ArrayStack {
private:
 E* S; // array holding the stack
 int cap; // capacity
 int t; // index of top element
public:
 // constructor given capacity
 ArrayStack(int c) :
 S(new E[c]), cap(c), t(-1) {}
```

```
 void pop() {
 if (empty()) throw StackEmpty
 ("Pop from empty stack");
 t--;
 }
 void push(const E& e) {
 if (size() == cap) throw
 StackFull("Push to full stack");
 S[++ t] = e;
}
... (other methods of Stack interface)
```


## Example use in C++

	$\qquad$ * indicates top	
A.push(7);	$\\| A=\left[7^{*}\right]$, size $=1$	
A.push(13);	// $A=\left[7,13^{*}\right]$, size $=2$	
cout << A.top() << endl; A.pop();	// $\mathrm{A}=\left[7^{*}\right]$, outputs: 13	
A.push(9);	// $A=\left[7,9^{*}\right]$, size $=2$	
cout << A.top() << endl;	$/ / \mathrm{A}=\left[7,9^{*}\right]$, outputs: 9	
cout << A.top() << endl; A.pop();	// $\mathrm{A}=\left[7^{*}\right]$, outputs: 9	
ArrayStack<string>B(10);	$/ / \mathrm{B}=[]$, size $=0$	
B.push("Bob");	// $\mathrm{B}=\left[\mathrm{Bob}^{*}\right]$, size $=1$	
B.push("Alice");	// B = [Bob, Alice*], size = 2	
cout << B.top() << endl; B.pop();	// B $=$ [Bob*], outputs: Alice	
B.push("Eve");	// B = [Bob, Eve*], size = 2	

## Stack in C++ STL

```
#include <stack>
```

using std::stack; // make stack accessible
stack<int> myStack; // a stack of integers
size(): Return the number of elements in the stack.
empty (): Return true if the stack is empty and false otherwise.
push $(e)$ : Push $e$ onto the top of the stack.
$\operatorname{pop}():$ Pop the element at the top of the stack.
top (): Return a reference to the element at the top of the stack.

## Example: Parentheses Matching

$\square$ Each "(", "\{", or "[" must be paired with a matching ")", "\}", or "["

- correct: ( )(( ))\{([( )])\}
- correct: $((())(())\{([()])\}$
- incorrect: )(( ))\{([( )])\}
- incorrect: (\{[ ])\}
- incorrect: (
- Good Programmer
- Someone who thinks that stack is a good data structure for the above task


## Example: Computing Spans

$\square$ Given an an array $\boldsymbol{X}$, the span
$S[i]$ of $X[i]$ is the maximum number of consecutive elements $\boldsymbol{X}[\boldsymbol{j}]$ immediately preceding $X[i]$ and such that $X[j] \leq X[i]$
$\square$ Spans have applications to financial analysis

- E.g., stock at 52-week high


$\boldsymbol{X}$	6	3	4	5	2
$\boldsymbol{S}$	1	1	2	3	1

## Algorithm: span1

	$i$				
X	6	3	4	5	2
$S$	1	1	2	3	1

## Loop over $i=0,1,2,3,4$

## For each $i$, compute $\mathrm{S}[i]$. How?

- From X[i] downward on, compute the number of elements which are consecutively smaller than X[i]


## Quadratic Algorithm

Algorithm $\operatorname{spans} 1(X, n)$
Input array $\boldsymbol{X}$ of $\boldsymbol{n}$ integers
Output array $\boldsymbol{S}$ of spans of $\boldsymbol{X}$
$S \leftarrow$ new array of $\boldsymbol{n}$ integers $\boldsymbol{n}$
for $i \leftarrow 0$ to $n-1$ do $n$
$s \leftarrow 1 \quad n$
while $s \leq i \wedge X[i-s] \leq X[i] \quad 1+2+\ldots+(n-1)$
$s \leftarrow s+1 \quad 1+2+\ldots+(n-1)$
$S[i] \leftarrow S$
n
return $S$
1

Algorithm spans1 runs in $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ time

## Algorithm: span2



From index 3 to 1, From inleexthatoX[4] is the I"annseratthattargeests". the "consecutive largest". So, please check X[0] sftefleatse check X[0] after it

Algorithm spans2(X,n)
$S \leftarrow$ new array of $\boldsymbol{n}$ integers
$A \leftarrow$ new empty stack
for $i \leftarrow 0$ to $n-1$ do
while ( $\neg$ A.empty () ^
$X[$ A.top ()$] \leq X[i])$ do A.pop()
if A.empty () then
$S[i] \leftarrow i+1$
else
$S[i] \leftarrow i-$ A. $\operatorname{top}()$
A.push(i)
return $S$

## Computing Spans with a Stack

$\square$ We keep in a stack the indices of the elements visible when "looking back"
$\square$ We scan the array from left to right

- Let $\boldsymbol{i}$ be the current index
- We pop indices from the stack until we find index $\boldsymbol{j}$ such that $\boldsymbol{X}[i]$ $<X[j]$
- We set $S[i] \leftarrow i-j$
- We push $\boldsymbol{x}$ onto the stack



## Linear Algorithm

Each index of the array

- Is pushed into the stack exactly one
- Is popped from the stack at most once
$*$ The statements in the while-loop are executed at most $\boldsymbol{n}$ times
* Algorithm spans2 runs in $\boldsymbol{O}(\boldsymbol{n})$ time

Algorithm $\operatorname{spans} 2(X, n) \quad \#$
$S \leftarrow$ new array of $\boldsymbol{n}$ integers $\quad \boldsymbol{n}$
$A \leftarrow$ new empty stack $\quad 1$
for $i \leftarrow 0$ to $n-1$ do $n$
while ( $\neg$ A.empty () ^
$X[$ A.top ()$] \leq X[i])$ do $n$
A.pop()
if A.empty () then $S[i] \leftarrow i+1$
$n$
else
$S[i] \leftarrow i-A \cdot \operatorname{top}() \quad n$
A.push(i)
return $S \quad 1$

## Questions?

