Tips for a good system engineer and/or a good programmer

Computer systems

- Whatever you want to do in your computer, there are ways
- Fast searching of how to do them in google, and courage to try them in your systems
- People often tend to try only what they know
- No fear about using new tools and commands

* Programming

- Not a technique, but a science (감으로 하는 것이 아님)
- Clearly know what a language provides and understand the underlying principles in relation to its interaction with computer internals

EE 205

Data Structure and Algorithms for Electrical Engineering

Lecture 3. Analysis of Algorithms

Yung Yi

Input
Algorithm
An algorithm is a step-by-step procedure for solving a problem in a finite amount of time.

What are we going to learn?

Need to say that some algorithms are "better" than others
Criteria for evaluation

- Structure of programs (simplicity, elegance, OO, etc.)
- Running time
- Memory space
- What else???

Running Time (§3.1)

Most algorithms transform input objects into output objects.

* The running time of an algorithm typically grows with the input size.
- Average-case running time is often difficult to determine.
- Why?

We focus on the worst case running

- Easier to analyze
- Crucial to applications such as games, finance and robotics

Average Case vs. Worst Case

The average case running time is harder to analyze because you need to know the probability distribution of the input.

- In certain apps (air traffic control, weapon systems,etc.), knowing the worst case time is
 important.

Experimental Approach

* Write a program implementing the algorithm

Run the program with inputs of varying size and composition

- Use a wall clock to get an accurate measure of the actual running time

Plot the results

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult and often time-consuming
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used
- Restrictions

Theoretical Analysis

* Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

The Random Access Machine (RAM) Model

- A CPU

- A potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character

- Memory cells are numbered and accessing any cell in memory takes unit time.

Pseudocode (§4.2.3)

High-level description of an algorithm

Example: find the max element of an array
More structured than english prose

Less detailed than a program

Preferred notation for describing algorithms

```
Algorithm arrayMax \((A, n)\)
    Input array \(\boldsymbol{A}\) of \(\boldsymbol{n}\) integers
    Output maximum element of \(\boldsymbol{A}\)
    currentMax \(\leftarrow A[0]\)
    for \(i \leftarrow 1\) to \(n-1\) do
        if \(A[i]>\) currentMax then
        currentMax \(\leftarrow A[i]\)
    return currentMax
```

 Hides program design
 issues

Pseudocode Details

Control flow

- if ... then ... [else ...]
- while ... do ...
- repeat ... until ...
- for ... do ...
- Indentation replaces braces
-

Method declaration
Algorithm method (arg [, arg...])
Input ...
Output ...

Method call
var.method (arg [, arg...])
Return value
return expression
Expressions
\leftarrow Assignment
(like $=$ in C, C++)
$=$ Equality testing (like $==$ in $\mathrm{C}, \mathrm{C}++$)
n^{2} Superscripts and other mathematical formatting allowed

Seven Important Functions (§3.3)

Seven functions that often appear in algorithm analysis:

- Constant ≈ 1
- Logarithmic $\approx \log n$
- Linear $\approx n$
- $\mathrm{N}-\log -\mathrm{N} \approx n \log n$
- Quadratic $\approx \boldsymbol{n}^{2}$
- Cubic $\approx n^{3}$
- Exponential $\approx \mathbf{2}^{n}$
* In a log-log chart, the slope of the line corresponds to the growth rate of the function

Primitive Operations

Basic computations performed by an algorithm

- Identifiable in pseudocode

Largely independent from the programming language

- Exact definition not important (we will see why later)
Assumed to take a constant amount of time in the RAM model

Examples:

- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

Counting Primitive Operations (§3.4)

By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
Algorithm arrayMax \((A, n)\)
    currentMax \(\leftarrow A[0]\)
    for \(i \leftarrow 1\) to \(n-1\) do
        if \(A[i]>\) currentMax then
        currentMax \(\leftarrow A[i]\)
    \(\{\) increment counter \(\boldsymbol{i}\}\)
    return currentMax
```

for $i \leftarrow 1$ to $n-1$ do if $A[i]>$ currentMax then currentMax $\leftarrow A[i]$
\{ increment counter $\boldsymbol{i}\}$
return currentMax
\# operations 2

$$
2(n-1)
$$

$$
2(n-1)
$$

$$
2(n-1)
$$

1

Total $8 \boldsymbol{n}-2$

Estimating Running Time

- Algorithm arrayMax executes $8 \boldsymbol{n}-2$ primitive operations in the worst case. Define:
$a=$ Time taken by the fastest primitive operation
$\boldsymbol{b}=$ Time taken by the slowest primitive operation
Let $\boldsymbol{T}(\boldsymbol{n})$ be worst-case time of $\operatorname{arrayMax}$. Then

$$
\boldsymbol{a}(8 \boldsymbol{n}-2) \leq \boldsymbol{T}(\boldsymbol{n}) \leq \boldsymbol{b}(8 \boldsymbol{n}-2)
$$

Hence, the running time $\boldsymbol{T}(\boldsymbol{n})$ is bounded by two linear functions

Growth Rate of Running Time

Changing the hardware/ software environment

- Affects $T(n)$ by a constant factor, but
- Does not alter the growth rate of $\boldsymbol{T}(\boldsymbol{n})$
* The linear growth rate of the running time $\boldsymbol{T}(\boldsymbol{n})$ is an intrinsic property of algorithm arrayMax

Constant Factors

The growth rate is not affected by

- constant factors or
- lower-order terms

Examples

- $10^{2} \boldsymbol{n}+10^{5}$ is a linear function
- $10^{5} \boldsymbol{n}^{2}+10^{8} \boldsymbol{n}$ is a quadratic function

We consider when \boldsymbol{n} is sufficiently large

- We call this "Asymptotic Analysis" (점근적 분석)

Big-Oh Notation (§4.2.3)

Given functions $\boldsymbol{f}(\boldsymbol{n})$ and $\boldsymbol{g}(\boldsymbol{n})$, we say that $\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$ if there are positive constants
\boldsymbol{c} and $\boldsymbol{n}_{\mathbf{0}}$ such that
$\boldsymbol{f}(\boldsymbol{n}) \leq \boldsymbol{c g}(\boldsymbol{n})$ for $\boldsymbol{n} \geq \boldsymbol{n}_{\mathbf{0}}$

- Example: $2 \boldsymbol{n}+10$ is $\boldsymbol{O}(\boldsymbol{n})$
- $2 \boldsymbol{n}+10 \leq \boldsymbol{c} \boldsymbol{n}$
- $(c-2) n \geq 10$
- $n \geq 10 /(c-2)$
- Pick $\boldsymbol{c}=3$ and $\boldsymbol{n}_{\mathbf{0}}=10$

Big-Oh Example

Example: the function \boldsymbol{n}^{2} is not $\boldsymbol{O}(\boldsymbol{n})$

- $n^{2} \leq c n$
- $\boldsymbol{n} \leq \boldsymbol{c}$
- The above inequality cannot be satisfied since \boldsymbol{c} must be a constant

- 7n-2
$7 n-2$ is $O(n)$
need $c>0$ and $n_{0} \geq 1$ such that $7 n-2 \leq c \bullet n$ for $n \geq n_{0}$
this is true for $\mathrm{c}=7$ and $\mathrm{n}_{0}=1$
- $3 n^{3}+20 n^{2}+5$
$3 n^{3}+20 n^{2}+5$ is $O\left(n^{3}\right)$
need $c>0$ and $n_{0} \geq 1$ such that $3 n^{3}+20 n^{2}+5 \leq c \cdot n^{3}$ for $n \geq n_{0}$ this is true for $\mathrm{c}=4$ and $\mathrm{n}_{0}=21$
- $3 \log \mathrm{n}+5$
$3 \log n+5$ is $O(\log n)$
need $c>0$ and $n_{0} \geq 1$ such that $3 \log n+5 \leq c \bullet l o g n$ for $n \geq n_{0}$ this is true for $\mathrm{c}=8$ and $\mathrm{n}_{0}=2$
- (Question) $3 \log n+5$ is $O(n)$? Yes or No?

Big-Oh and Growth Rate

* The big-Oh notation gives an upper bound on the growth rate of a function
* The statement " $\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))^{\prime}$ means that the growth rate of $\boldsymbol{f}(\boldsymbol{n})$ is no more than the growth rate of $\boldsymbol{g}(\boldsymbol{n})$
* We can use the big-Oh notation to rank functions according to their growth rate

Which is possible?

	$\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$	$\boldsymbol{g}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{f}(\boldsymbol{n}))$
$\boldsymbol{g}(\boldsymbol{n})$ grows faster	Yes	No
$\boldsymbol{f}(\boldsymbol{n})$ grows faster	No	Yes
Same growth	Yes	Yes

- If is $\boldsymbol{f}(\boldsymbol{n})$ a polynomial of degree \boldsymbol{d}, then $\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}\left(\boldsymbol{n}^{d}\right)$, i.e.,

1. Drop lower-order terms
2. Drop constant factors

Use the smallest possible class of functions

- Say " $2 \boldsymbol{n}$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $2 \boldsymbol{n}$ is $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ "
- Use the simplest expression of the class
- Say " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(3 \boldsymbol{n})$ "

Asymptotic Algorithm Analysis

* The asymptotic analysis of an algorithm determines the running time in big-Oh notation
* To perform the asymptotic analysis
- We find the worst-case number of primitive operations executed as a function of the input size
- We express this function with big-Oh notation

Example:

- We determine that algorithm arrayMax executes at most $8 \boldsymbol{n}-2$ primitive operations
- We say that algorithm arrayMax "runs in $\boldsymbol{O}(\boldsymbol{n})$ time"

Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Computing Prefix Averages

We further illustrate asymptotic analysis with two algorithms for prefix averages

* The \boldsymbol{i}-th prefix average of an array \boldsymbol{X} is average of the first $(\boldsymbol{i}+1)$ elements of \boldsymbol{X} :
$A[i]=(X[0]+X[1]+\ldots+X[i]) /(i+1)$

Computing the array \boldsymbol{A} of prefix averages of another array \boldsymbol{X} has applications to financial analysis

Prefix Averages (Quadratic)

* The following algorithm computes prefix averages in quadratic time by applying the definition

```
Algorithm prefixAverages1( \(X, n\) )
    Input array \(\boldsymbol{X}\) of \(\boldsymbol{n}\) integers
    Output array \(\boldsymbol{A}\) of prefix averages of \(\boldsymbol{X}\) \#operations
    \(\boldsymbol{A} \leftarrow\) new array of \(\boldsymbol{n}\) integers \(\boldsymbol{n}\)
    for \(i \leftarrow 0\) to \(n-1\) do
        \(s \leftarrow X[0]\)
        for \(j \leftarrow 1\) to \(i\) do
        \(s \leftarrow s+X[j]\)
        \(A[i] \leftarrow s /(i+1)\)
```

 return \(A\)
 1

Arithmetic Progression

The running time of prefixAverages1 is $\boldsymbol{O}(1+2+\ldots+\boldsymbol{n})$

* The sum of the first \boldsymbol{n} integers is $\boldsymbol{n}(\boldsymbol{n}+1) / 2$
- There is a simple visual proof of this fact
- Thus, algorithm prefixAverages1 runs in $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ time

Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time by keeping a running sum

```
Algorithm prefixAverages2(X,n)
    Input array }\boldsymbol{X}\mathrm{ of }\boldsymbol{n}\mathrm{ integers
    Output array A}\mathrm{ of prefix averages of }\boldsymbol{X}\mathrm{ #operations
    A}\leftarrow\mathrm{ new array of }\boldsymbol{n}\mathrm{ integers n
    s}\leftarrow
    for }\boldsymbol{i}\leftarrow0\mathrm{ to }\boldsymbol{n}-1\mathbf{do
        s\leftarrows+X[i] n
        A[i]}\leftarrows/(i+1) n'
    return A
        1
```

Algorithm prefixAverages 2 runs in $\boldsymbol{O}(\boldsymbol{n})$ time

Another Example

Result $\leftarrow 0$; $m \leftarrow 1$;
for $l \leftarrow 1$ to n
$m \leftarrow m^{*} 2 ;$
for $j \leftarrow 1$ to m do

```
        result }\leftarrow\mathrm{ result + i* m*j
```


Math you need to review

Summations

- Logarithms and

Exponents
properties of logarithms:

$$
\begin{aligned}
& \log _{b}(x y)=\log _{b} x+\log _{b} y \\
& \log _{b}(x / y)=\log _{b} x-\log _{b} y \\
& \log _{b} x^{a}=a \log _{b} x \\
& \log _{b} a=\log _{x} a / \log _{x} b
\end{aligned}
$$

properties of exponentials:
Proof techniques
Basic probability
For randomized
algorithms (later in this course)

$$
\begin{aligned}
& a^{(b+c)}=a^{b} a^{c} \\
& a^{b c}=\left(a^{b}\right)^{c} \\
& a^{b} / a^{c}=a^{(b-c)} \\
& b=a^{\log _{a} b} \\
& b^{c}=a^{c^{*} \log _{a} b}
\end{aligned}
$$

Relatives of Big-Oh

big-Omega

- $\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n})$) if there is a constant $\mathrm{c}>0$
and an integer constant $n_{0} \geq 1$ such that
$\mathrm{f}(\mathrm{n}) \geq \mathrm{c} \bullet \mathrm{g}(\mathrm{n})$ for $\mathrm{n} \geq \mathrm{n}_{0}$

- big-Theta

- $f(n)$ is $\Theta(g(n))$ if there are constants $c^{\prime}>0$ and $c^{\prime \prime}>0$ and an integer constant $\mathrm{n}_{0} \geq 1$ such that $\mathrm{c}^{\prime} \cdot \mathrm{g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq$ $c^{\prime \prime} \cdot g(n)$ for $n \geq n_{0}$

Intuition for Asymptotic Notation

Big-Oh

- $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically less than or equal to $g(n)$

big-Omega

- $f(n)$ is $\Omega(g(n))$ if $f(n)$ is asymptotically greater than or equal to $g(n)$
big-Theta
- $f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically equal to $g(n)$

Examples (1)

$■ 5 n^{2}$ is $\Omega\left(n^{2}\right)$
$f(n)$ is $\Omega(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $f(n) \geq c \bullet g(n)$ for $n \geq n_{0}$
let $c=5$ and $n_{0}=1$
$\square 5 n^{2}$ is $\Omega(n)$
$f(n)$ is $\Omega(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $\mathrm{f}(n) \geq c \cdot g(n)$ for $n \geq n_{0}$
let $c=1$ and $n_{0}=1$

Examples (2)

$\square 5 \boldsymbol{n}^{\mathbf{2}}$ is $\Theta\left(\boldsymbol{n}^{\mathbf{2}}\right)$
$f(n)$ is $\Theta(g(n))$ if it is $\Omega\left(n^{2}\right)$ and $O\left(n^{2}\right)$. we have already seen the former, for the latter (for $O\left(n^{2}\right)$)recall that $f(n)$ is $O(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq$ 1 such that $\mathrm{f}(n) \leq c \bullet g(n)$ for $n \geq n_{0}$
Let $c=5$ and $n_{0}=1$

What do we want for our algorithms?

- Prof. Yung Yi \rightarrow A graduate student
- "What is the order of your algorithm?"
- Answer: nlogn, $\mathrm{n}^{2}, \mathrm{n}^{3}, 2^{\mathrm{n}}$
- Polynomial order
- Generally fine.
- Try to reduce the running time if above or equal to n^{3}
- There are some problems for which there does NOT exist any polynomial-time algorithm (up to so far)
- We say that they "NP-hard" or "NP-complete"
- You will learn formalism for this in the algorithm class

