
Tips for a good system engineer and/or a good 
programmer

Computer systems
n Whatever you want to do in your computer, there are ways

w Fast searching of how to do them in google, and courage to try them in 
your systems

w People often tend to try only what they know

n No fear about using new tools and commands

Programming
n Not a technique, but a science (감으로하는것이아님)
n Clearly know what a language provides and understand the 

underlying principles in relation to its interaction with 
computer internals
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AlgorithmInput Output

An algorithm is a step-by-step procedure for
solving a problem in a finite amount of time.

What are we going to learn?
Need to say that some algorithms are “better” than others
Criteria for evaluation
n Structure of programs (simplicity, elegance, OO, etc.)
n Running time     
n Memory space
n What else???
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Running Time (§3.1) 
Most algorithms transform input 
objects into output objects.

The running time of an algorithm 
typically grows with the input size.

Average-case running time is often 
difficult to determine.
n Why?

We focus on the worst case running 
time.
n Easier to analyze
n Crucial to applications such as games, 

finance and robotics
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Average Case vs. Worst Case
The average case running time 
is harder to analyze because 
you need to know the 
probability distribution of the 
input.

In certain apps (air traffic 
control, weapon systems,etc.), 
knowing the worst case time is 
important.
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Experimental Approach
Write a program implementing 
the algorithm

Run the program with inputs of 
varying size and composition

Use a wall clock to get an 
accurate measure of the actual 
running time

Plot the results
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Limitations of Experiments
It is necessary to implement the algorithm, which may be 
difficult and often time-consuming

Results may not be indicative of the running time on other 
inputs not included in the experiment. 

In order to compare two algorithms, the same hardware and 
software environments must be used
n Restrictions
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Theoretical Analysis
Uses a high-level description of the algorithm instead of 
an implementation

Characterizes running time as a function of the input size, 
n.

Takes into account all possible inputs

Allows us to evaluate the speed of an algorithm 
independent of the hardware/software environment
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The Random Access Machine (RAM) Model
A CPU

A potentially unbounded bank of 
memory cells, each of which can hold 
an arbitrary number or character
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Memory cells are numbered and accessing any 
cell in memory takes unit time.



Pseudocode (§4.2.3)
High-level description of 
an algorithm

More structured than 
english prose

Less detailed than a 
program

Preferred notation for 
describing algorithms

Hides program design 
issues
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Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax¬ A[0]
for i¬ 1 to n - 1 do
if A[i] > currentMax then
currentMax¬ A[i]

return currentMax

Example: find the max 
element of an array

Pseudocode Details
Control flow
n if … then … [else …]
n while … do …
n repeat … until …
n for … do …
n Indentation replaces braces
n

Method declaration
Algorithm method (arg [, arg…])

Input …
Output …
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Method call
var.method (arg [, arg…])

Return value
return expression

Expressions
¬Assignment

(like = in C, C++)
= Equality testing

(like == in C, C++)
n2 Superscripts and other 

mathematical formatting 
allowed



Seven Important Functions (§3.3)
Seven functions that often 
appear in algorithm 
analysis:
n Constant » 1
n Logarithmic » log n
n Linear » n
n N-Log-N » n log n
n Quadratic » n2
n Cubic » n3
n Exponential » 2n

In a log-log chart, the 
slope of the line 
corresponds to the 
growth rate of the 
function
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Primitive Operations
Basic computations performed by 
an algorithm
Identifiable in pseudocode
Largely independent from the 
programming language
Exact definition not important (we 
will see why later)
Assumed to take a constant amount 
of time in the RAM model
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Examples:
n Evaluating an 

expression
n Assigning a value to 

a variable
n Indexing into an 

array
n Calling a method
n Returning from a 

method



Counting Primitive Operations (§3.4)
By inspecting the pseudocode, we can determine the maximum 
number of primitive operations executed by an algorithm, as a 
function of the input size
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Algorithm arrayMax(A, n) # operations
currentMax ¬ A[0] 2
for i ¬ 1 to n - 1 do 2n

if A[i] > currentMax then 2(n - 1)
currentMax ¬ A[i] 2(n - 1)

{ increment counter i } 2(n - 1)
return currentMax 1

Total 8n - 2

Estimating Running Time
Algorithm arrayMax executes 8n - 2 primitive operations in 
the worst case.  Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

Let T(n) be worst-case time of arrayMax. Then
a (8n - 2) £ T(n) £ b(8n - 2)

Hence, the running time T(n) is bounded by two linear 
functions
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Growth Rate of Running Time
Changing the hardware/ software environment 
n Affects T(n) by a constant factor, but
n Does not alter the growth rate of T(n)

The linear growth rate of the running time T(n) is an 
intrinsic property of algorithm arrayMax
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Constant Factors
The growth rate is not
affected by
n constant factors or 
n lower-order terms

Examples
n 102n + 105 is a linear 

function
n 105n2 + 108n is a 

quadratic function

We consider when n is 
sufficiently large
n We call this “Asymptotic 

Analysis” (점근적분석)
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Big-Oh Notation (§4.2.3)
Given functions f(n) and 
g(n), we say that f(n) is 
O(g(n)) if there are positive 
constants
c and n0 such that

f(n) £ cg(n)  for n ³ n0
Example: 2n + 10 is O(n)
n 2n + 10 £ cn
n (c - 2) n ³ 10
n n ³ 10/(c - 2)
n Pick c = 3 and n0 = 10
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Big-Oh Example
Example: the function n2
is not O(n)
n n2 £ cn
n n £ c
n The above inequality 

cannot be satisfied since c
must be a constant 
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More Big Oh Examples
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• 7n-2
7n-2 is O(n)
need c > 0 and n0 ³ 1 such that 7n-2 £ c•n for n ³ n0
this is true for c = 7 and n0 = 1

• 3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)
need c > 0 and n0 ³ 1 such that 3n3 + 20n2 + 5 £ c•n3 for n ³ n0
this is true for c = 4 and n0 = 21

• 3 log n + 5
3 log n + 5 is O(log n)
need c > 0 and n0 ³ 1 such that 3 log n + 5 £ c•log n for n ³ n0
this is true for c = 8 and n0 = 2

• (Question) 3 log n + 5 is O(n)? Yes or No?

Big-Oh and Growth Rate
The big-Oh notation gives an upper bound on the growth rate of 
a function
The statement “f(n) is O(g(n))” means that the growth rate of f(n) 
is no more than the growth rate of g(n)
We can use the big-Oh notation to rank functions according to 
their growth rate
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f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows faster Yes No
f(n) grows faster No Yes
Same growth Yes Yes

Which is possible?



Big-Oh Rules
If is f(n) a polynomial of degree d, then f(n) is O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

Use the smallest possible class of functions
n Say “2n is O(n)” instead of “2n is O(n2)”

Use the simplest expression of the class
n Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”
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Asymptotic Algorithm Analysis
The asymptotic analysis of an algorithm determines the running 
time in big-Oh notation
To perform the asymptotic analysis

n We find the worst-case number of primitive operations executed as a 
function of the input size

n We express this function with big-Oh notation
Example:

n We determine that algorithm arrayMax executes at most 8n - 2 
primitive operations

n We say that algorithm arrayMax “runs in O(n) time”
Since constant factors and lower-order terms are eventually 
dropped anyhow, we can disregard them when counting 
primitive operations

24



Computing Prefix Averages
We further illustrate asymptotic 
analysis with two algorithms for 
prefix averages

The i-th prefix average of an array 
X is average of the first (i + 1) 
elements of X:
A[i] = (X[0] + X[1] + … + X[i])/(i+1)

Computing the array A of prefix 
averages of another array X has 
applications to financial analysis
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Prefix Averages (Quadratic)
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The following algorithm computes prefix averages in 
quadratic time by applying the definition

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations
A ¬ new array of n integers n
for i ¬ 0 to n - 1 do n

s ¬ X[0] n
for j ¬ 1 to i do 1 + 2 + …+ (n - 1)

s ¬ s + X[j] 1 + 2 + …+ (n - 1)
A[i] ¬ s / (i + 1) n

return A 1



Arithmetic Progression
The running time of 
prefixAverages1 is
O(1 + 2 + …+ n)

The sum of the first n
integers is n(n + 1) / 2
n There is a simple visual proof 

of this fact

Thus, algorithm 
prefixAverages1 runs in O(n2) 
time 

27

0
1

2
3
4
5

6
7

1 2 3 4 5 6

Prefix Averages (Linear)
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The following algorithm computes prefix averages in linear 
time by keeping a running sum

Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations
A ¬ new array of n integers n
s ¬ 0 1
for i ¬ 0 to n - 1 do n

s ¬ s + X[i] n
A[i] ¬ s / (i + 1) n

return A 1

Algorithm prefixAverages2 runs in O(n) time 



Another Example
Result ¬ 0; m ¬ 1;
for I ¬ 1 to n

m ¬ m*2;
for j ¬ 1 to m do

result ¬ result + i*m*j
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Math you need to review

properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

properties of exponentials:
a(b+c) = aba c
abc = (ab)c
ab /ac = a(b-c)

b = a logab
bc = a c*logab
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Summations
Logarithms and 
Exponents

Proof techniques
Basic probability

For randomized 
algorithms (later in 
this course)



Relatives of Big-Oh
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big-Omega
n f(n) is W(g(n)) if there is a constant c > 0 

and an integer constant n0 ³ 1 such that 
f(n) ³ c•g(n) for n ³ n0

big-Theta
n f(n) is Q(g(n)) if there are constants c’ > 0 and c’’ > 0 

and an integer constant n0 ³ 1 such that c’•g(n) £ f(n) £
c’’•g(n) for n ³ n0

Intuition for Asymptotic Notation
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Big-Oh
n f(n) is O(g(n)) if f(n) is asymptotically less 

than or equal to g(n)
big-Omega
n f(n) is W(g(n)) if f(n) is asymptotically greater 

than or equal to g(n)
big-Theta
n f(n) is Q(g(n)) if f(n) is asymptotically equal to 

g(n)



Examples (1)
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f(n) is W(g(n)) if there is a constant c > 0 and an 
integer constant n0 ³ 1 such that f(n) ³ c•g(n) for 
n ³ n0

let c = 1 and n0 = 1

n 5n2 is W(n)

f(n) is W(g(n)) if there is a constant c > 0 and an 
integer constant n0 ³ 1 such that f(n) ³ c•g(n) for 
n ³ n0

let c = 5 and n0 = 1

n 5n2 is W(n2)

Examples (2)
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f(n) is Q(g(n)) if it is W(n2) and O(n2). we 
have already seen the former, for the latter 
(for O(n2))recall that f(n) is O(g(n)) if there is 
a constant c > 0 and an integer constant n0 ³
1 such that f(n) < c•g(n) for n ³ n0 

Let c = 5 and n0 = 1

n 5n2 is Q(n2)



What do we want for our algorithms?
Prof. Yung Yi à A graduate student
n “What is the order of your algorithm?”
n Answer: nlogn, n2, n3, 2n

Polynomial order
n Generally fine. 
n Try to reduce the running time if above or equal to n3

There are some problems for which there does NOT exist 
any polynomial-time algorithm (up to so far)
n We say that they “NP-hard” or “NP-complete”
n You will learn formalism for this in the algorithm class
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