
Tips for a good system engineer and/or a good
programmer

Computer systems
n Whatever you want to do in your computer, there are ways

w Fast searching of how to do them in google, and courage to try them in
your systems

w People often tend to try only what they know

n No fear about using new tools and commands

Programming
n Not a technique, but a science (감으로하는것이아님)
n Clearly know what a language provides and understand the

underlying principles in relation to its interaction with
computer internals

1

EE 205
Data Structure and Algorithms for Electrical Engineering

Lecture 3. Analysis of Algorithms

Yung Yi

AlgorithmInput Output

An algorithm is a step-by-step procedure for
solving a problem in a finite amount of time.

What are we going to learn?
Need to say that some algorithms are “better” than others
Criteria for evaluation
n Structure of programs (simplicity, elegance, OO, etc.)
n Running time
n Memory space
n What else???

4

Running Time (§3.1)
Most algorithms transform input
objects into output objects.

The running time of an algorithm
typically grows with the input size.

Average-case running time is often
difficult to determine.
n Why?

We focus on the worst case running
time.
n Easier to analyze
n Crucial to applications such as games,

finance and robotics
5

0

20

40

60

80

100

120

R
un

ni
ng

 T
im

e

1000 2000 3000 4000
Input Size

best case
average case
worst case

Average Case vs. Worst Case
The average case running time
is harder to analyze because
you need to know the
probability distribution of the
input.

In certain apps (air traffic
control, weapon systems,etc.),
knowing the worst case time is
important.

6

Experimental Approach
Write a program implementing
the algorithm

Run the program with inputs of
varying size and composition

Use a wall clock to get an
accurate measure of the actual
running time

Plot the results

7

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100
Input Size

Ti
m

e
(m

s)

Limitations of Experiments
It is necessary to implement the algorithm, which may be
difficult and often time-consuming

Results may not be indicative of the running time on other
inputs not included in the experiment.

In order to compare two algorithms, the same hardware and
software environments must be used
n Restrictions

8

Theoretical Analysis
Uses a high-level description of the algorithm instead of
an implementation

Characterizes running time as a function of the input size,
n.

Takes into account all possible inputs

Allows us to evaluate the speed of an algorithm
independent of the hardware/software environment

9

The Random Access Machine (RAM) Model
A CPU

A potentially unbounded bank of
memory cells, each of which can hold
an arbitrary number or character

10

0
1

2

Memory cells are numbered and accessing any
cell in memory takes unit time.

Pseudocode (§4.2.3)
High-level description of
an algorithm

More structured than
english prose

Less detailed than a
program

Preferred notation for
describing algorithms

Hides program design
issues

11

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax¬ A[0]
for i¬ 1 to n - 1 do
if A[i] > currentMax then
currentMax¬ A[i]

return currentMax

Example: find the max
element of an array

Pseudocode Details
Control flow
n if … then … [else …]
n while … do …
n repeat … until …
n for … do …
n Indentation replaces braces
n

Method declaration
Algorithm method (arg [, arg…])

Input …
Output …

12

Method call
var.method (arg [, arg…])

Return value
return expression

Expressions
¬Assignment

(like = in C, C++)
= Equality testing

(like == in C, C++)
n2 Superscripts and other

mathematical formatting
allowed

Seven Important Functions (§3.3)
Seven functions that often
appear in algorithm
analysis:
n Constant » 1
n Logarithmic » log n
n Linear » n
n N-Log-N » n log n
n Quadratic » n2
n Cubic » n3
n Exponential » 2n

In a log-log chart, the
slope of the line
corresponds to the
growth rate of the
function

13

1E+0
1E+2
1E+4
1E+6
1E+8
1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26
1E+28
1E+30

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n
)

Cubic

Quadratic

Linear

Primitive Operations
Basic computations performed by
an algorithm
Identifiable in pseudocode
Largely independent from the
programming language
Exact definition not important (we
will see why later)
Assumed to take a constant amount
of time in the RAM model

14

Examples:
n Evaluating an

expression
n Assigning a value to

a variable
n Indexing into an

array
n Calling a method
n Returning from a

method

Counting Primitive Operations (§3.4)
By inspecting the pseudocode, we can determine the maximum
number of primitive operations executed by an algorithm, as a
function of the input size

15

Algorithm arrayMax(A, n) # operations
currentMax ¬ A[0] 2
for i ¬ 1 to n - 1 do 2n

if A[i] > currentMax then 2(n - 1)
currentMax ¬ A[i] 2(n - 1)

{ increment counter i } 2(n - 1)
return currentMax 1

Total 8n - 2

Estimating Running Time
Algorithm arrayMax executes 8n - 2 primitive operations in
the worst case. Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

Let T(n) be worst-case time of arrayMax. Then
a (8n - 2) £ T(n) £ b(8n - 2)

Hence, the running time T(n) is bounded by two linear
functions

16

Growth Rate of Running Time
Changing the hardware/ software environment
n Affects T(n) by a constant factor, but
n Does not alter the growth rate of T(n)

The linear growth rate of the running time T(n) is an
intrinsic property of algorithm arrayMax

17

Constant Factors
The growth rate is not
affected by
n constant factors or
n lower-order terms

Examples
n 102n + 105 is a linear

function
n 105n2 + 108n is a

quadratic function

We consider when n is
sufficiently large
n We call this “Asymptotic

Analysis” (점근적분석)

18

1E+0
1E+2
1E+4
1E+6
1E+8
1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n
)

Quadratic
Quadratic
Linear
Linear

Big-Oh Notation (§4.2.3)
Given functions f(n) and
g(n), we say that f(n) is
O(g(n)) if there are positive
constants
c and n0 such that

f(n) £ cg(n) for n ³ n0
Example: 2n + 10 is O(n)
n 2n + 10 £ cn
n (c - 2) n ³ 10
n n ³ 10/(c - 2)
n Pick c = 3 and n0 = 10

19

1

10

100

1,000

10,000

1 10 100 1,000
n

3n

2n+10

n

Big-Oh Example
Example: the function n2
is not O(n)
n n2 £ cn
n n £ c
n The above inequality

cannot be satisfied since c
must be a constant

20

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000
n

n^2
100n
10n
n

More Big Oh Examples

21

• 7n-2
7n-2 is O(n)
need c > 0 and n0 ³ 1 such that 7n-2 £ c•n for n ³ n0
this is true for c = 7 and n0 = 1

• 3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)
need c > 0 and n0 ³ 1 such that 3n3 + 20n2 + 5 £ c•n3 for n ³ n0
this is true for c = 4 and n0 = 21

• 3 log n + 5
3 log n + 5 is O(log n)
need c > 0 and n0 ³ 1 such that 3 log n + 5 £ c•log n for n ³ n0
this is true for c = 8 and n0 = 2

• (Question) 3 log n + 5 is O(n)? Yes or No?

Big-Oh and Growth Rate
The big-Oh notation gives an upper bound on the growth rate of
a function
The statement “f(n) is O(g(n))” means that the growth rate of f(n)
is no more than the growth rate of g(n)
We can use the big-Oh notation to rank functions according to
their growth rate

22

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows faster Yes No
f(n) grows faster No Yes
Same growth Yes Yes

Which is possible?

Big-Oh Rules
If is f(n) a polynomial of degree d, then f(n) is O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

Use the smallest possible class of functions
n Say “2n is O(n)” instead of “2n is O(n2)”

Use the simplest expression of the class
n Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

23

Asymptotic Algorithm Analysis
The asymptotic analysis of an algorithm determines the running
time in big-Oh notation
To perform the asymptotic analysis

n We find the worst-case number of primitive operations executed as a
function of the input size

n We express this function with big-Oh notation
Example:

n We determine that algorithm arrayMax executes at most 8n - 2
primitive operations

n We say that algorithm arrayMax “runs in O(n) time”
Since constant factors and lower-order terms are eventually
dropped anyhow, we can disregard them when counting
primitive operations

24

Computing Prefix Averages
We further illustrate asymptotic
analysis with two algorithms for
prefix averages

The i-th prefix average of an array
X is average of the first (i + 1)
elements of X:
A[i] = (X[0] + X[1] + … + X[i])/(i+1)

Computing the array A of prefix
averages of another array X has
applications to financial analysis

25

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

X
A

0 1 2 3 4 5 6

Prefix Averages (Quadratic)

26

The following algorithm computes prefix averages in
quadratic time by applying the definition

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations
A ¬ new array of n integers n
for i ¬ 0 to n - 1 do n

s ¬ X[0] n
for j ¬ 1 to i do 1 + 2 + …+ (n - 1)

s ¬ s + X[j] 1 + 2 + …+ (n - 1)
A[i] ¬ s / (i + 1) n

return A 1

Arithmetic Progression
The running time of
prefixAverages1 is
O(1 + 2 + …+ n)

The sum of the first n
integers is n(n + 1) / 2
n There is a simple visual proof

of this fact

Thus, algorithm
prefixAverages1 runs in O(n2)
time

27

0
1

2
3
4
5

6
7

1 2 3 4 5 6

Prefix Averages (Linear)

28

The following algorithm computes prefix averages in linear
time by keeping a running sum

Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations
A ¬ new array of n integers n
s ¬ 0 1
for i ¬ 0 to n - 1 do n

s ¬ s + X[i] n
A[i] ¬ s / (i + 1) n

return A 1

Algorithm prefixAverages2 runs in O(n) time

Another Example
Result ¬ 0; m ¬ 1;
for I ¬ 1 to n

m ¬ m*2;
for j ¬ 1 to m do

result ¬ result + i*m*j

29

Math you need to review

properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

properties of exponentials:
a(b+c) = aba c
abc = (ab)c
ab /ac = a(b-c)

b = a logab
bc = a c*logab

30

Summations
Logarithms and
Exponents

Proof techniques
Basic probability

For randomized
algorithms (later in
this course)

Relatives of Big-Oh

31

big-Omega
n f(n) is W(g(n)) if there is a constant c > 0

and an integer constant n0 ³ 1 such that
f(n) ³ c•g(n) for n ³ n0

big-Theta
n f(n) is Q(g(n)) if there are constants c’ > 0 and c’’ > 0

and an integer constant n0 ³ 1 such that c’•g(n) £ f(n) £
c’’•g(n) for n ³ n0

Intuition for Asymptotic Notation

32

Big-Oh
n f(n) is O(g(n)) if f(n) is asymptotically less

than or equal to g(n)
big-Omega
n f(n) is W(g(n)) if f(n) is asymptotically greater

than or equal to g(n)
big-Theta
n f(n) is Q(g(n)) if f(n) is asymptotically equal to

g(n)

Examples (1)

33

f(n) is W(g(n)) if there is a constant c > 0 and an
integer constant n0 ³ 1 such that f(n) ³ c•g(n) for
n ³ n0

let c = 1 and n0 = 1

n 5n2 is W(n)

f(n) is W(g(n)) if there is a constant c > 0 and an
integer constant n0 ³ 1 such that f(n) ³ c•g(n) for
n ³ n0

let c = 5 and n0 = 1

n 5n2 is W(n2)

Examples (2)

34

f(n) is Q(g(n)) if it is W(n2) and O(n2). we
have already seen the former, for the latter
(for O(n2))recall that f(n) is O(g(n)) if there is
a constant c > 0 and an integer constant n0 ³
1 such that f(n) < c•g(n) for n ³ n0

Let c = 5 and n0 = 1

n 5n2 is Q(n2)

What do we want for our algorithms?
Prof. Yung Yi à A graduate student
n “What is the order of your algorithm?”
n Answer: nlogn, n2, n3, 2n

Polynomial order
n Generally fine.
n Try to reduce the running time if above or equal to n3

There are some problems for which there does NOT exist
any polynomial-time algorithm (up to so far)
n We say that they “NP-hard” or “NP-complete”
n You will learn formalism for this in the algorithm class

35

