NID

Quick-Sort

(74962524679 |

/\

(42524 | (79579 |

We will look at this later ...

Algorithm Time Notes
o 5 = in-place
selection-sort O(n”) = slow (good for small inputs)
_ -) " in-place
Insertion-sort O(n?) = slow (good for small inputs)
_ O(n log n) | =in-place, randomized
quick-sort expected = fastest (good for large inputs)
" in-place
heap-sort O(nlogn) |, ¢ (good for large inputs)
= sequential data access
merge-sort O(n log n)

= fast (good for huge inputs)

Quick-Sort

@ Quick-sort is a randomized
sorting algorithm based on
the divide-and-conquer
paradigm:

m Divide: pick a random

element x (called pivot) and
partition .S into

¢ L elements less than x

¢+ E elements equal x

¢+ G elements greater than x
m Recur:sortL and G
m Conquer:joinL, Eand G

Execution Example

Pivot selection

72943861 |

Execution Example (cont.)

@ Partition, recursive call, pivot selection

Execution Example (cont.)

@ Partition, recursive call, base case

[72943851_]

Execution Example (cont.)

@ Recursive call, ..., base case, join

(72943861]

I

243151234

//\'\

Execution Example (cont.)

@ Recursive call, pivot selection

(72943861]
e —
(243151234 [7 98 |

Execution Example (cont.)

@ Partition, ..., recursive call, base case

(72943861]
/\
(243151234 (798]

PN ™
(151] (43> 3 4

Execution Example (cont.)

@ Join, join
72943861 512346789 |
m
(243151234 (798 > 789 |

(151] (43 > 3 4] 77

10

Quick-Sort Tree

@ An execution of quick-sort is depicted by a binary tree

m Each node represents a recursive call of quick-sort and stores
¢ Unsorted sequence before the execution and its pivot
+ Sorted sequence at the end of the execution

m The root is the initial call

m The leaves are calls on subsequences of size O or 1

L=2,4 E=6, G=7,9 [7 4962 —>2461729]

L=2E=4,G=none[ﬂ 2 > 2 4] [7 9 > 79]

11

Partition

@ We partition an input sequence
as follows:

m We remove, in turn, each
element y from § and

m WeinsertyintoL, EorG,
depending on the result of the
comparison with the pivot x

@ Each insertion and removal is at
the beginning or at the end of a
sequence, and hence takes O(1)
time

@ Thus, the partition step of quick-
sort takes O(n) time

Algorithm partition(S, p)
Input sequence S, position p of pivot

Output subsequences L, E, G of the
clements of § less than, equal to,
or greater than the pivot, resp.

L, E, G < empty sequences
X < S.erase(p)
while —S.empty()
y < S.eraseFront()
if y<x
L.insertBack(y)
elseif y =x
E.insertBack(y)
else { y>x}
G.insertBack(y)
return ., E, G

12

Worst-case Running Time

@ The worst case for quick-sort occurs when the pivot is the uniqgue minimum or
maximum element

@ One of L and G has size n — 1 and the other has size 0

@ The running time is proportional to the sum
n+n—-1)+..+2+1

@ Thus, the worst-case running time of quick-sort is O(n?)

depth time
0 n l]
1 n-1 L] [)

13

Expected Running Time (1)

@ Consider a recursive call of quick-sort on a sequence of size s

m Good call: the sizes of L and G are each less than 3s/4 (“unbiased to some degree”)

= Bad call: one of L and G has size greater than 3s/4 (“biased to some degree”)

)

72943761 (72943761
m &
2431 797 1] 17294376
Good call Bad call

@ A call is good with probability 1/2
s 1/2 of the possible pivots cause good calls:

(1234567891011 1213141516 |
H_l\ ~ JH_J

Bad pivots Good pivots Bad pivots

14

Expected Running Time (2)

@ Consider a binary tree T used in the Quick-sort.

@ Definition
m A node v (a collection of elements) in T is said to be in size group i

. 3\ {i+1} _ ’ 3\ (i}
if (Z) n < the size of v's subproblem < (Z) n

m Thus, every node is in some size group (e.g., the root node is in size group 0)

Number of size Expected time per
groups . 0 size group
size group
g)Semowmo O(n)
size group 1
- O(n)
O(log n) size group 2 O()
R n
\ 4

Total expected time: O(n log n) 15

Number of size
groups

Expected time per
size group

Expected Running Time (3) T+ L=

size group |

N — O(n)
#® Q1. How many size groups? Olog)

. 3\ i} o /
s (Ans) i, such that (Z) n=1,i.e.,i=2log,;n /

Total expected time: O(n log n)

#® Q2. What is the expected time spent working on all the subproblems for nodes
in size group i (which we denote by T)?

m If the answer is O(n), then we are done, because the number of size groups *
expected running time for each size group = n * log n.

m T =sum of the expected times for each node, say v, in size group i (linearity of
expectation). Thus, our question is “what is the expected time for a node in size
group i”?

m V's subproblem may be either of good call or bad call.

m (Two facts) Since a probability of good call is %,
+ (i) The expected number of consecutive calls before a good call is 2 (i.e., constant)

+ (ii) As soon as we have a good call for node v (in size group i), its children will be in size groups higher
than i. (because at least % reduction of the original size happens)

16

Number of size Expected time per
groups size group

Expected Running Time (4) T L=

size group |

N — O(n)
#® Q1. How many size groups? Olog)

. 3\ i} o /
s (Ans) i, such that (Z) n=1,i.e.,i=2log,;n /

Total expected time: O(n log n)

#® Q2. What is the expected time spent working on all the subproblems for nodes
in size group i (which we denote by T)?

m Thus, for any elements x in the input list, the expected number of nodes in size
group i containing x in their subproblems is 2. (on average, constant number times
of being at a bad call group and then move to the size group higher than i)

m > Expected total size of all the subproblems in size group i is 2n

+ - Non-recursive work we perform for any subproblem is proportional to its size
+ - Expected time per each size group is O(n)

@ Thus,

m log n size groups & n computations per each size group
= > O(nlogn)

17

Summary of Sorting Algorithms

Algorithm Time Notes
o 5 = in-place
selection-sort O(n”) = slow (good for small inputs)
_ -) " in-place
Insertion-sort O(n?) = slow (good for small inputs)
_ O(n log n = in-place, randomized
quick-sort (n log) X i
expected = fastest (good for large inputs)
" in-place
heap-sort O(nlogn) |, ¢ (good for large inputs)
= sequential data access
merge-sort O(n log n)

= fast (good for huge inputs)

18

Questions?

