

# Quick-Sort

- Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
  - Divide: pick a <u>random</u> element x (called pivot) and partition S into
    - L elements less than x
    - E elements equal x
    - **G** elements greater than **x**
  - Recur: sort *L* and *G*
  - Conquer: join *L*, *E* and *G*



# We will look at this later ...

| Algorithm      | Time                               | Notes                                                                             |
|----------------|------------------------------------|-----------------------------------------------------------------------------------|
| selection-sort | <b>O</b> ( <b>n</b> <sup>2</sup> ) | <ul><li>in-place</li><li>slow (good for small inputs)</li></ul>                   |
| insertion-sort | <b>O</b> ( <b>n</b> <sup>2</sup> ) | <ul><li>in-place</li><li>slow (good for small inputs)</li></ul>                   |
| quick-sort     | O(n log n)<br>expected             | <ul> <li>in-place, randomized</li> <li>fastest (good for large inputs)</li> </ul> |
| heap-sort      | <b>O</b> ( <b>n</b> log <b>n</b> ) | <ul> <li>in-place</li> <li>fast (good for large inputs)</li> </ul>                |
| merge-sort     | <b>O</b> ( <b>n</b> log <b>n</b> ) | <ul> <li>sequential data access</li> <li>fast (good for huge inputs)</li> </ul>   |

2

# **Execution Example**

Pivot selection



#### Execution Example (cont.)

Partition, recursive call, pivot selection

# 

# Execution Example (cont.)

◆ Recursive call, ..., base case, join



# Execution Example (cont.)

Partition, recursive call, base case



#### Execution Example (cont.)

◆ Recursive call, pivot selection



5

#### Execution Example (cont.)

Partition, ..., recursive call, base case



# **Quick-Sort Tree**

- An execution of quick-sort is depicted by a binary tree
  - Each node represents a recursive call of quick-sort and stores
    - Unsorted sequence before the execution and its pivot
    - Sorted sequence at the end of the execution
  - The root is the initial call
  - The leaves are calls on subsequences of size 0 or 1



# Execution Example (cont.)

🔷 Join, join



Partition

- We partition an input sequence as follows:
  - We remove, in turn, each element *y* from *S* and
  - We insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
- Thus, the partition step of quicksort takes O(n) time

Algorithm *partition*(*S*, *p*) **Input** sequence *S*, position *p* of pivot **Output** subsequences *L*, *E*, *G* of the elements of *S* less than, equal to, or greater than the pivot, resp. L, E,  $G \leftarrow$  empty sequences  $x \leftarrow S.erase(p)$ while ¬*S.empty*()  $y \leftarrow S.eraseFront()$ if v < x*L.insertBack*(*y*) else if y = x*E.insertBack(y)* else  $\{ v > x \}$ G.insertBack(v) return L, E, G

10

# Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
- One of  $\boldsymbol{L}$  and  $\boldsymbol{G}$  has size  $\boldsymbol{n} 1$  and the other has size 0
- The running time is proportional to the sum

$$n + (n - 1) + \ldots + 2 + 1$$

• Thus, the worst-case running time of quick-sort is  $O(n^2)$ 



#### Expected Running Time (1)

- Consider a recursive call of quick-sort on a sequence of size s
  - Good call: the sizes of *L* and *G* are each less than 3*s*/4 ("unbiased to some degree")
  - Bad call: one of *L* and *G* has size greater than 3s/4 ("biased to some degree")



Good call



- A call is good with probability 1/2
  - 1/2 of the possible pivots cause good calls:



14

# Expected Running Time (2)

- Consider a binary tree T used in the Quick-sort.
- Definition
  - A node v (a collection of elements) in T is said to be in size group i
     <sup>(3)</sup>
     <sup>{i+1}</sup>
     <sup>(3)</sup>
     <sup>{i</sup>
    - f  $\left(\frac{3}{4}\right)^{(\iota+1)} n \le$  the size of v's subproblem  $\le \left(\frac{3}{4}\right)^{\{i\}} n$
  - Thus, every node is in some size group (e.g., the root node is in size group 0)



# Expected Running Time (3)

- Q1. How many size groups?
  - (Ans) i, such that  $\left(\frac{3}{4}\right)^{\{i\}} n = 1$ , i.e.,  $i = 2log_{4/3}n$



- Q2. What is the expected time spent working on all the subproblems for nodes in size group *i* (which we denote by T)?
  - If the answer is O(n), then we are done, because the number of size groups \* expected running time for each size group = n \* log n.
  - T = sum of the expected times for each node, say v, in size group i (linearity of expectation). Thus, our question is "what is the expected time for a node in size group i"?
  - v's subproblem may be either of good call or bad call.
  - (Two facts) Since a probability of good call is 1/2,
    - (i) The expected number of consecutive calls before a good call is 2 (i.e., constant)
    - (ii) As soon as we have a good call for node v (in size group i), its children will be in size groups higher than i. (because at least ¾ reduction of the original size happens)

# Expected Running Time (4)

◆ Q1. How many size groups?



- (Ans) i, such that  $\left(\frac{3}{4}\right)^{\{i\}} n = 1$ , i.e., *i* = 2log<sub>4/3</sub>n
- Q2. What is the expected time spent working on all the subproblems for nodes in size group *i* (which we denote by T)?
  - Thus, for any elements x in the input list, the expected number of nodes in size group i containing x in their subproblems is 2. (on average, constant number times of being at a bad call group and then move to the size group higher than i)
  - $\rightarrow$  Expected total size of all the subproblems in size group i is 2n
    - \*  $\rightarrow$  Non-recursive work we perform for any subproblem is proportional to its size
    - \*  $\rightarrow$  Expected time per each size group is O(n)
- 🔶 Thus,
  - log n size groups & n computations per each size group
  - $\rightarrow$  O(n log n)

#### Summary of Sorting Algorithms

| Algorithm      | Time                               | Notes                                                                           |
|----------------|------------------------------------|---------------------------------------------------------------------------------|
| selection-sort | <b>O</b> ( <b>n</b> <sup>2</sup> ) | <ul><li>in-place</li><li>slow (good for small inputs)</li></ul>                 |
| insertion-sort | <b>O</b> ( <b>n</b> <sup>2</sup> ) | <ul><li>in-place</li><li>slow (good for small inputs)</li></ul>                 |
| quick-sort     | O(n log n)<br>expected             | <ul><li>in-place, randomized</li><li>fastest (good for large inputs)</li></ul>  |
| heap-sort      | <b>O</b> ( <b>n</b> log <b>n</b> ) | <ul><li>in-place</li><li>fast (good for large inputs)</li></ul>                 |
| merge-sort     | <b>O</b> ( <b>n</b> log <b>n</b> ) | <ul> <li>sequential data access</li> <li>fast (good for huge inputs)</li> </ul> |





18