Quick-Sort
(749
(42524
(252] |
Quick-Sort

@ Quick-sort is a randomized
sorting algorithm based on
the divide-and-conquer
paradigm:

= Divide: pick a random
element x (called pivot) and
partition S into
¢ L elements less than x
¢ E elements equal x
¢ G elements greater than x
m Recur:sort L and G
m Conquer:join L, E and G

We will look at this later ...

Algorithm Time Notes
selection-sort o(n?) : Esrllc-)'\jxia(cgeood for small inputs)
insertion-sort o(n?) : LT;SJa((:;Jeood for small inputs)
quick-sort Oe()g)i(;%eg) : :”ra]-slzleasie(,gf;j ?cr)]:ilzaerC;e inputs)
heap-sort O(n log n) : :’Z-slzl?gsod for large inputs)
er e O(n log n) = sequential data access

= fast (good for huge inputs)

Execution Example

@ Pivot selection

72943861

Execution Example (cont.) Execution Example (cont.)

@ Partition, recursive call, pivot selection @ Partition, recursive call, base case

(72943861 | (72943861 |

Execution Example (cont.) Execution Example (cont.)
@ Recursive call, ..., base case, join @ Recursive call, pivot selection
(72943861 | (72943861 |
~
(243151234 798

151

Execution Example (cont.)

@ Partition, ..., recursive call, base case

(72943861 |

(243151234 (798 |

151

Quick-Sort Tree

@ An execution of quick-sort is depicted by a binary tree
m Each node represents a recursive call of quick-sort and stores
* Unsorted sequence before the execution and its pivot
+ Sorted sequence at the end of the execution
m The root is the initial call
m The leaves are calls on subsequences of size 0 or 1

L=2,4 E=6, G=7,9

(74962524679 |

L=2 E=4,G=none[i 2 > 2 4]

2-2) (] |

(79 >79]

] (959

11

Execution Example (cont.)

@ Join, join

72943861 ->5123467289

. 4

(243151234

151 4

4 >4

Partition

@ We partition an input sequence
as follows:
= We remove, in turn, each
element y from § and
= Weinsertyinto L, E or G,
depending on the result of the
comparison with the pivot x

@ Each insertion and removal is at
the beginning or at the end of a
sequence, and hence takes O(1)
time

@ Thus, the partition step of quick-
sort takes O(n) time

10

Algorithm partition(S, p)
Input sequence S, position p of pivot

Output subsequences L, E, G of the
elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G < empty sequences
X < S.erase(p)
while —S.empty()
y « S.eraseFront()
ify<x
L.insertBack(y)
elseif y =x
E.insertBack(y)
else { y>x}
G.insertBack(y)
return L, E, G

12

Worst-case Running Time Expected Running Time (1)

@ The worst case for quick-sort occurs when the pivot is the unique minimum or @ Consider a recursive call of quick-sort on a sequence of size s
maximum element = Good call: the sizes of L and G are each less than 3s/4 (“unbiased to some degree”)

@ One of L and G has size n — 1 and the other has size 0 = Bad call: one of L and G has size greater than 3s/4 (“biased to some degree”)

@ The running time is proportional to the sum

n+(m—1+.. +2+1 (72943761) (72943761
@ Thus, the worst-case running time of quick-sort is O(n?) - > /
(2431] (797) MJ
depth time Good call Bad call

@ A callis good with probability 1/2
= 1/2 of the possible pivots cause good calls:

I on-1 [{
P (12345678910111213141516 |
. J

\ J \L v 7 \\ Y

E Bad pivots Good pivots Bad pivots
n—1 1

13 14

Number of size Expected time per

Expected Running Time (2) Expected Running Time (3) ‘

@ Consider a binary tree T used in the Quick-sort. 4 Q1. How many size groups? Odlog n)
@ Definition) N o
= (Ans) i, such that (—) n=1,ie.,i=2log,;n
= A node v (a collection of elements) in T is said to be in size group i 4 Total expected time: O(r log)
n\{i+1} {i}
if (—) n < the size of v's subproblem < (—) n . . .
4 P 4 @ Q2. What is the expected time spent working on all the subproblems for nodes
= Thus, every node is in some size group (e.g., the root node is in size group 0) in size group i (which we denote by T)?
= If the answer is O(n), then we are done, because the number of size groups *
Number of size Expected time per expected running time for each size group =n * log n.
groups) size group
size group 0 0
D (n) = T =sum of the expected times for each node, say v, in size group i (linearity of
g expectation). Thus, our question is “what is the expected time for a node in size
size group 1 group i”?
""""""""" O(n) = V's subproblem may be either of good call or bad call.
O(log n) / size group 2 = (Two facts) Since a probability of good call is %,
Jls@|| s@ || s(e) | [s()| kmemmmmemenes n) + (i) The expected number of consecutive calls before a good call is 2 (i.e., constant)
/ + (i) As soon as we have a good call for node v (in size group i), its children will be in size groups higher
/ than i. (because at least % reduction of the original size happens)

¢ \ .
. \ .

Total expected time: O(n log n) 15 16

Expected Running Time (4)

€ Q1. How many size groups?

N
= (Ans) i, such that (Z) n=1,ie.,i=2log,;n

Total expected time: O(n log n)

@ Q2. What is the expected time spent working on all the subproblems for nodes
in size group i (which we denote by T)?
= Thus, for any elements x in the input list, the expected number of nodes in size
group i containing x in their subproblems is 2. (on average, constant number times
of being at a bad call group and then move to the size group higher than i)

= > Expected total size of all the subproblems in size group iis 2n
+ - Non-recursive work we perform for any subproblem is proportional to its size
+ - Expected time per each size group is O(n)

@ Thus,
= log n size groups & n computations per each size group
= > O(nlogn)

17

Questions?

Summary of Sorting Algorithms

Algorithm Time Notes
selection-sort o(n?) : isrllc;'\j;a(cgeood for small inputs)
insertion-sort o(n?) : isT;SJa((:;Jeood for small inputs)
quick-sort Oe()g):::%eg) : :”ra]-slzleasie(,gf;j ?cr)]:ilzaerC;e inputs)
heap-sort O(n log n) : :’Z-slzl?;sod for large inputs)
er e O(n log n) = sequential data access

= fast (good for huge inputs)

18

