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We will look at this later …
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Algorithm Time Notes
selection-sort O(n2) § in-place

§ slow (good for small inputs)

insertion-sort O(n2) § in-place
§ slow (good for small inputs)

quick-sort O(n log n)
expected

§ in-place, randomized
§ fastest (good for large inputs)

heap-sort O(n log n) § in-place
§ fast (good for large inputs)

merge-sort O(n log n) § sequential data access
§ fast  (good for huge inputs)

Quick-Sort
Quick-sort is a randomized 
sorting algorithm based on 
the divide-and-conquer 
paradigm:
n Divide: pick a random

element x (called pivot) and 
partition S into 
w L elements less than x
w E elements equal x
w G elements greater than x

n Recur: sort L and G
n Conquer: join L, E and G
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Execution Example
Pivot selection
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7  2  9  4  ® 2  4  7  9

2 ® 2

7  2  9  4 3  8 6 1 ® 1  2  3  4  6  7  8  9

3  8  6  1  ® 1  3  8  6

3 ® 3 8 ® 89  4  ® 4  9

9 ® 9 4 ® 4



Execution Example (cont.)
Partition, recursive call, pivot selection
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2 4  3  1 ® 2  4  7  9

9  4  ® 4  9

9 ® 9 4 ® 4

7  2  9  4  3  8 6 1 ® 1  2  3  4  6  7  8  9

3  8  6  1  ® 1  3  8  6

3 ® 3 8 ® 82 ® 2

Execution Example (cont.)
Partition, recursive call, base case
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2 4  3  1 ®® 2  4  7  

1 ® 1 9  4  ® 4  9

9 ® 9 4 ® 4

7  2  9  4 3  8 6 1 ® ® 1  2  3  4  6  7  8  9

3  8  6  1  ® 1  3  8  6

3 ® 3 8 ® 8

Execution Example (cont.)
Recursive call, …, base case, join
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3  8  6  1  ® 1  3  8  6

3 ® 3 8 ® 8

7  2  9  4 3  8 6 1 ® 1  2  3  4  6  7  8  9

2 4  3  1 ® 1  2 3  4

1 ® 1 4  3 ® 3 4

9 ® 9 4 ® 4

Execution Example (cont.)
Recursive call, pivot selection
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7  9  8 1  ® 1  3  8  6

8 ® 8

7  2  9  4 3  8 6 1 ® 1  2  3  4  6  7  8  9

2 4  3  1 ® 1  2 3  4

1 ® 1 4  3 ® 3 4

9 ® 9 4 ® 4

9 ® 9



Execution Example (cont.)
Partition, …, recursive call, base case
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7  9  8 1  ® 1  3  8  6

7 ® 7

7  2  9  4 3  8 6 1 ® 1  2  3  4  6  7  8  9

2 4  3  1 ® 1  2 3  4

1 ® 1 4  3 ® 3 4

4 ® 4

9 ® 9

Execution Example (cont.)
Join, join
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7 9  8 ® 17 8 9

8 ® 8

7  2  9  4  3  8 6 1  ® 1  2  3  4  6 7  8 9

2 4  3  1 ® 1  2 3  4

1 ® 1 4  3 ® 3 4

9 ® 9 4 ® 4

9 ® 97 ® 7

Quick-Sort Tree
An execution of quick-sort is depicted by a binary tree
n Each node represents a recursive call of quick-sort and stores

w Unsorted sequence before the execution and its pivot
w Sorted sequence at the end of the execution

n The root is the initial call 
n The leaves are calls on subsequences of size 0 or 1
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7  4  9  6 2  ® 2  4  6 7  9

4 2  ® 2  4 7 9  ® 7 9

2 ® 2 9 ® 9

L=2,4 E=6, G=7,9

L=2 E=4, G=none

Partition
We partition an input sequence 
as follows:
n We remove, in turn, each 

element y from S and 
n We insert y into L, E or G,

depending on the result of the 
comparison with the pivot x

Each insertion and removal is at 
the beginning or at the end of a 
sequence, and hence takes O(1)
time

Thus, the partition step of quick-
sort takes O(n) time
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Algorithm partition(S, p)
Input sequence S, position p of pivot 
Output subsequences L, E, G of the 

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ¬ empty sequences
x ¬ S.erase(p)
while ¬S.empty()

y ¬ S.eraseFront()
if y < x

L.insertBack(y)
else if y = x

E.insertBack(y)
else { y > x }

G.insertBack(y)
return L, E, G



Worst-case Running Time
The worst case for quick-sort occurs when the pivot is the unique minimum or 
maximum element
One of L and G has size n - 1 and the other has size 0
The running time is proportional to the sum

n + (n - 1) + … + 2 + 1
Thus, the worst-case running time of quick-sort is O(n2)
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Expected Running Time (1)
Consider a recursive call of quick-sort on a sequence of size s
n Good call: the sizes of L and G are each less than 3s/4 (“unbiased to some degree”)
n Bad call: one of L and G has size greater than 3s/4 (“biased to some degree”)

A call is good with probability 1/2
n 1/2 of the possible pivots cause good calls:
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7  9  7 1  ® 1

7  2  9  4 3  7  6 1 9

2  4  3  1 7 2 9 4 3 7 61

7  2 9  4 3  7  6  1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots

Expected Running Time (2)
Consider a binary tree T used in the Quick-sort.
Definition
n A node v (a collection of elements) in T is said to be in size group i

if   !
"

#$%
𝑛 ≤ the size of v’s subproblem ≤ !

"

#
𝑛

n Thus, every node is in some size group (e.g., the root node is in size group 0)
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Expected Running Time (3)
Q1. How many size groups?

n (Ans) i, such that !
"

#
𝑛 = 1, i.e., i = 2log4/3n

Q2. What is the expected time spent working on all the subproblems for nodes 
in size group i (which we denote by T)?
n If the answer is O(n), then we are done, because the number of size groups * 

expected running time for each size group = n * log n. 

n T = sum of the expected times for each node, say v, in size group i (linearity of 
expectation). Thus, our question is “what is the expected time for a node in size 
group i”?

n v’s subproblem may be either of good call or bad call. 
n (Two facts) Since a probability of good call is ½,

w (i) The expected number of consecutive calls before a good call is 2 (i.e., constant)
w (ii) As soon as we have a good call for node v (in size group i), its children will be in size groups higher 

than i. (because at least ¾ reduction of the original size happens)
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Expected Running Time (4)
Q1. How many size groups?

n (Ans) i, such that !
"

#
𝑛 = 1, i.e., i = 2log4/3n

Q2. What is the expected time spent working on all the subproblems for nodes 
in size group i (which we denote by T)?
n Thus, for any elements x in the input list, the expected number of nodes in size 

group i containing x in their subproblems is 2. (on average, constant number times 
of being at a bad call group and then move to the size group higher than i)

n à Expected total size of all the subproblems in size group i is 2n
w à Non-recursive work we perform for any subproblem is proportional to its size
w à Expected time per each size group is O(n)

Thus, 
n log n size groups & n computations per each size group
n à O(n log n)
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Summary of Sorting Algorithms
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Algorithm Time Notes
selection-sort O(n2) § in-place

§ slow (good for small inputs)

insertion-sort O(n2) § in-place
§ slow (good for small inputs)

quick-sort O(n log n)
expected

§ in-place, randomized
§ fastest (good for large inputs)

heap-sort O(n log n) § in-place
§ fast (good for large inputs)

merge-sort O(n log n) § sequential data access
§ fast  (good for huge inputs)

Questions?


