
Quick-Sort

7 4 9 6 2 ® 2 4 6 7 9

4 2 ® 2 4 7 9 ® 7 9

2 ® 2 9 ® 9

1

We will look at this later …

2

Algorithm Time Notes
selection-sort O(n2) § in-place

§ slow (good for small inputs)

insertion-sort O(n2) § in-place
§ slow (good for small inputs)

quick-sort O(n log n)
expected

§ in-place, randomized
§ fastest (good for large inputs)

heap-sort O(n log n) § in-place
§ fast (good for large inputs)

merge-sort O(n log n) § sequential data access
§ fast (good for huge inputs)

Quick-Sort
Quick-sort is a randomized
sorting algorithm based on
the divide-and-conquer
paradigm:
n Divide: pick a random

element x (called pivot) and
partition S into
w L elements less than x
w E elements equal x
w G elements greater than x

n Recur: sort L and G
n Conquer: join L, E and G

3

x

x

L GE

x

Execution Example
Pivot selection

4

7 2 9 4 ® 2 4 7 9

2 ® 2

7 2 9 4 3 8 6 1 ® 1 2 3 4 6 7 8 9

3 8 6 1 ® 1 3 8 6

3 ® 3 8 ® 89 4 ® 4 9

9 ® 9 4 ® 4

Execution Example (cont.)
Partition, recursive call, pivot selection

5

2 4 3 1 ® 2 4 7 9

9 4 ® 4 9

9 ® 9 4 ® 4

7 2 9 4 3 8 6 1 ® 1 2 3 4 6 7 8 9

3 8 6 1 ® 1 3 8 6

3 ® 3 8 ® 82 ® 2

Execution Example (cont.)
Partition, recursive call, base case

6

2 4 3 1 ®® 2 4 7

1 ® 1 9 4 ® 4 9

9 ® 9 4 ® 4

7 2 9 4 3 8 6 1 ® ® 1 2 3 4 6 7 8 9

3 8 6 1 ® 1 3 8 6

3 ® 3 8 ® 8

Execution Example (cont.)
Recursive call, …, base case, join

7

3 8 6 1 ® 1 3 8 6

3 ® 3 8 ® 8

7 2 9 4 3 8 6 1 ® 1 2 3 4 6 7 8 9

2 4 3 1 ® 1 2 3 4

1 ® 1 4 3 ® 3 4

9 ® 9 4 ® 4

Execution Example (cont.)
Recursive call, pivot selection

8

7 9 8 1 ® 1 3 8 6

8 ® 8

7 2 9 4 3 8 6 1 ® 1 2 3 4 6 7 8 9

2 4 3 1 ® 1 2 3 4

1 ® 1 4 3 ® 3 4

9 ® 9 4 ® 4

9 ® 9

Execution Example (cont.)
Partition, …, recursive call, base case

9

7 9 8 1 ® 1 3 8 6

7 ® 7

7 2 9 4 3 8 6 1 ® 1 2 3 4 6 7 8 9

2 4 3 1 ® 1 2 3 4

1 ® 1 4 3 ® 3 4

4 ® 4

9 ® 9

Execution Example (cont.)
Join, join

10

7 9 8 ® 17 8 9

8 ® 8

7 2 9 4 3 8 6 1 ® 1 2 3 4 6 7 8 9

2 4 3 1 ® 1 2 3 4

1 ® 1 4 3 ® 3 4

9 ® 9 4 ® 4

9 ® 97 ® 7

Quick-Sort Tree
An execution of quick-sort is depicted by a binary tree
n Each node represents a recursive call of quick-sort and stores

w Unsorted sequence before the execution and its pivot
w Sorted sequence at the end of the execution

n The root is the initial call
n The leaves are calls on subsequences of size 0 or 1

11

7 4 9 6 2 ® 2 4 6 7 9

4 2 ® 2 4 7 9 ® 7 9

2 ® 2 9 ® 9

L=2,4 E=6, G=7,9

L=2 E=4, G=none

Partition
We partition an input sequence
as follows:
n We remove, in turn, each

element y from S and
n We insert y into L, E or G,

depending on the result of the
comparison with the pivot x

Each insertion and removal is at
the beginning or at the end of a
sequence, and hence takes O(1)
time

Thus, the partition step of quick-
sort takes O(n) time

12

Algorithm partition(S, p)
Input sequence S, position p of pivot
Output subsequences L, E, G of the

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ¬ empty sequences
x ¬ S.erase(p)
while ¬S.empty()

y ¬ S.eraseFront()
if y < x

L.insertBack(y)
else if y = x

E.insertBack(y)
else { y > x }

G.insertBack(y)
return L, E, G

Worst-case Running Time
The worst case for quick-sort occurs when the pivot is the unique minimum or
maximum element
One of L and G has size n - 1 and the other has size 0
The running time is proportional to the sum

n + (n - 1) + … + 2 + 1
Thus, the worst-case running time of quick-sort is O(n2)

13

depth time

0 n

1 n - 1

… …

n - 1 1

…

Expected Running Time (1)
Consider a recursive call of quick-sort on a sequence of size s
n Good call: the sizes of L and G are each less than 3s/4 (“unbiased to some degree”)
n Bad call: one of L and G has size greater than 3s/4 (“biased to some degree”)

A call is good with probability 1/2
n 1/2 of the possible pivots cause good calls:

14

7 9 7 1 ® 1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 61

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots

Expected Running Time (2)
Consider a binary tree T used in the Quick-sort.
Definition
n A node v (a collection of elements) in T is said to be in size group i

if !
"

#$%
𝑛 ≤ the size of v’s subproblem ≤ !

"

#
𝑛

n Thus, every node is in some size group (e.g., the root node is in size group 0)

15

Expected Running Time (3)
Q1. How many size groups?

n (Ans) i, such that !
"

#
𝑛 = 1, i.e., i = 2log4/3n

Q2. What is the expected time spent working on all the subproblems for nodes
in size group i (which we denote by T)?
n If the answer is O(n), then we are done, because the number of size groups *

expected running time for each size group = n * log n.

n T = sum of the expected times for each node, say v, in size group i (linearity of
expectation). Thus, our question is “what is the expected time for a node in size
group i”?

n v’s subproblem may be either of good call or bad call.
n (Two facts) Since a probability of good call is ½,

w (i) The expected number of consecutive calls before a good call is 2 (i.e., constant)
w (ii) As soon as we have a good call for node v (in size group i), its children will be in size groups higher

than i. (because at least ¾ reduction of the original size happens)

16

Expected Running Time (4)
Q1. How many size groups?

n (Ans) i, such that !
"

#
𝑛 = 1, i.e., i = 2log4/3n

Q2. What is the expected time spent working on all the subproblems for nodes
in size group i (which we denote by T)?
n Thus, for any elements x in the input list, the expected number of nodes in size

group i containing x in their subproblems is 2. (on average, constant number times
of being at a bad call group and then move to the size group higher than i)

n à Expected total size of all the subproblems in size group i is 2n
w à Non-recursive work we perform for any subproblem is proportional to its size
w à Expected time per each size group is O(n)

Thus,
n log n size groups & n computations per each size group
n à O(n log n)

17

Summary of Sorting Algorithms

18

Algorithm Time Notes
selection-sort O(n2) § in-place

§ slow (good for small inputs)

insertion-sort O(n2) § in-place
§ slow (good for small inputs)

quick-sort O(n log n)
expected

§ in-place, randomized
§ fastest (good for large inputs)

heap-sort O(n log n) § in-place
§ fast (good for large inputs)

merge-sort O(n log n) § sequential data access
§ fast (good for huge inputs)

Questions?

