Quick-Sort

We will look at this later ...

Algorithm	Time	Notes
selection-sort	$\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$	• in-place - slow (good for small inputs)
insertion-sort	$\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$	• in-place • slow (good for small inputs)
quick-sort	$\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ expected	- in-place, randomized • fastest (good for large inputs)
heap-sort	$\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$	- in-place - fast (good for large inputs)
merge-sort	$\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$	- sequential data access • fast (good for huge inputs)

Quick-Sort

* Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
- Divide: pick a random element \boldsymbol{x} (called pivot) and partition \boldsymbol{S} into
- \boldsymbol{L} elements less than \boldsymbol{x}
- \boldsymbol{E} elements equal \boldsymbol{x}
- \boldsymbol{G} elements greater than \boldsymbol{x}
- Recur: sort \boldsymbol{L} and \boldsymbol{G}
- Conquer: join $\boldsymbol{L}, \boldsymbol{E}$ and \boldsymbol{G}

Execution Example

Pivot selection

Execution Example (cont.)

Partition, recursive call, pivot selection

Execution Example (cont.)

Partition, recursive call, base case

Execution Example (cont.)

Recursive call, ..., base case, join

Execution Example (cont.)

Recursive call, pivot selection

Execution Example (cont.)

Partition, ..., recursive call, base case

Execution Example (cont.)

- Join, join

Quick-Sort Tree

An execution of quick-sort is depicted by a binary tree

- Each node represents a recursive call of quick-sort and stores
- Unsorted sequence before the execution and its pivot
- Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1

Partition

- We partition an input sequence as follows:
- We remove, in turn, each element \boldsymbol{y} from \boldsymbol{S} and
- We insert y into L, E or G, depending on the result of the comparison with the pivot \boldsymbol{x}
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes $\boldsymbol{O}(1)$ time
- Thus, the partition step of quicksort takes $\boldsymbol{O}(\boldsymbol{n})$ time

Algorithm $\operatorname{partition}(S, p)$

Input sequence S, position p of pivot
Output subsequences L, E, G of the elements of \boldsymbol{S} less than, equal to, or greater than the pivot, resp.
$L, E, G \leftarrow$ empty sequences
$x \leftarrow \operatorname{S.erase}(p)$
while \neg S.empty ()
$y \leftarrow$ S.eraseFront()
if $y<x$
L.insertBack(y)
else if $y=x$ E.insertBack(y)
else $\{\boldsymbol{y}>\boldsymbol{x}\}$
G.insertBack(y)
return L, E, G

Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
- One of \boldsymbol{L} and \boldsymbol{G} has size $\boldsymbol{n}-1$ and the other has size 0
- The running time is proportional to the sum

$$
\boldsymbol{n}+(\boldsymbol{n}-1)+\ldots+2+1
$$

- Thus, the worst-case running time of quick-sort is $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$
depth time

Expected Running Time (1)

Consider a recursive call of quick-sort on a sequence of size s

- Good call: the sizes of \boldsymbol{L} and \boldsymbol{G} are each less than $3 \boldsymbol{s} / 4$ ("unbiased to some degree")
- Bad call: one of \boldsymbol{L} and \boldsymbol{G} has size greater than $3 \boldsymbol{s} / 4$ ("biased to some degree")

Good call

Bad call

- A call is good with probability $1 / 2$
- $1 / 2$ of the possible pivots cause good calls:

Expected Running Time (2)

Consider a binary tree T used in the Quick-sort.

* Definition
- A node v (a collection of elements) in T is said to be in size group i if $\left(\frac{3}{4}\right)^{\{i+1\}} n \leq$ the size of v's subproblem $\leq\left(\frac{3}{4}\right)^{\{i\}} n$
- Thus, every node is in some size group (e.g., the root node is in size group 0)

Expected Running Time (3)

Q1. How many size groups?

- (Ans) i, such that $\left(\frac{3}{4}\right)^{\{i\}} n=1$, i.e., $\boldsymbol{i}=\mathbf{2} \log _{4 / 3} n$

* Q2. What is the expected time spent working on all the subproblems for nodes in size group i (which we denote by T)?
- If the answer is $O(n)$, then we are done, because the number of size groups * expected running time for each size group $=\mathrm{n} * \log \mathrm{n}$.
- T = sum of the expected times for each node, say v, in size group i (linearity of expectation). Thus, our question is "what is the expected time for a node in size group i"?
- v's subproblem may be either of good call or bad call.
- (Two facts) Since a probability of good call is $1 / 2$,
- (i) The expected number of consecutive calls before a good call is 2 (i.e., constant)
- (ii) As soon as we have a good call for node v (in size group i), its children will be in size groups higher than i. (because at least $3 / 4$ reduction of the original size happens)

Expected Running Time (4)

Q Q1. How many size groups?

- (Ans) i, such that $\left(\frac{3}{4}\right)^{\{i\}} n=1$, i.e., $\boldsymbol{i}=\mathbf{2} \log _{4 / 3} n$

- Q2. What is the expected time spent working on all the subproblems for nodes in size group i (which we denote by T)?
- Thus, for any elements x in the input list, the expected number of nodes in size group i containing x in their subproblems is 2. (on average, constant number times of being at a bad call group and then move to the size group higher than i)
- \rightarrow Expected total size of all the subproblems in size group i is 2 n
- \rightarrow Non-recursive work we perform for any subproblem is proportional to its size
- \rightarrow Expected time per each size group is $\mathrm{O}(\mathrm{n})$
- Thus,
- log n size groups \& n computations per each size group
- $\rightarrow \mathrm{O}(\mathrm{n} \log \mathrm{n})$

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$	• in-place - slow (good for small inputs)
insertion-sort	$\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$	• in-place - slow (good for small inputs)
quick-sort	$\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ expected	- in-place, randomized - fastest (good for large inputs)
heap-sort	$\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$	- in-place - fast (good for large inputs)
merge-sort	$\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$	- sequential data access - fast (good for huge inputs)

Questions?

