I

Merge Sort

[72|94—>2479]

[7|2—>27]

[9|4—>49]

(=) (252

53] (29

(l,
N

We will look at this table later ...

Algorithm

Time

Notes

selection-sort

O(n?)

= slow
= in-place
= for small data sets (< 1K)

insertion-sort

O(n?)

= slow
= in-place
= for small data sets (< 1K)

heap-sort

O(n log n)

= fast
= jn-place
= for large data sets (1K — 1M)

merge-sort

O(n log n)

= fast
= sequential data access
= for huge data sets (> 1M)

New things that we will learn from this part

@ Divide-and-Conquer rationale

@ Complexity analysis based on recurrence relation

Execution Example

@ Partition

7294|3861

Execution Example (cont.)

@ Recursive call, partition

(729413861]

Execution Example (cont.)

@ Recursive call, partition

(729413861]

(72194 |
P
AENEE B B L 5
o __) L) S e __ y Yool Llll.) Ne——s

Execution Example (cont.)

@ Recursive call, base case

(729413861]
(72194 | |]

(712

[J
AN A ANAN

Execution Example (cont.)

@ Recursive call, base case

(729413861]

Execution Example (cont.)
@® Merge

(729413861]

(72194

————————————

712527

Execution Example (cont.)

@ Recursive call, ..., base case, merge

(729413861]

I

(72194

O

(71252 7] 94 > 49

NI/
723 (22 (523 (223

Execution Example (cont.)
@® Merge

(729413861]

Execution Example (cont.)

@ Recursive call, ..., merge, merge

(729413861]
[72|94m—>1368
/\ /N

(712527 (94 >49] (38534 (6116

Execution Example (cont.)
@® Merge

7294|3861 512346789

= =

(72194524739

N

(3861136 8

N

(712527 (94 >409]

(3853

d (6116

N

ZONIIAN
723 (22 (29 (=3

EEEN

“A

-

13

Divide-and-Conquer (§ 10.1.1)

@ Divide-and conquer is a general
algorithm design paradigm:
m Divide: divide the input data S in
two disjoint subsets S, and §,

m Recur: solve the subproblems
associated with §; and §,

m Conquer: combine the solutions
for §; and §, into a solution for §

The base case for the recursion
are subproblems of size O or 1 =

@ Merge-sort is a sorting algorithm
based on the divide-and-conquer
paradigm

@ Like heap-sort

It uses a comparator
It has O(n log n) running time

@ Unlike heap-sort

It does not use an auxiliary priority
queue

It accesses data in a sequential
manner (suitable to sort data on a

disk)
Disk

+ Fast when accessing data sequentially

§ L=}

14

Merge-Sort (§ 10.1)

@ Merge-sort on an input

sequence S with n elements Algorithm mergeSort(S, C)
consists of three steps: Input scquence S with 7
m Divide: partition § into two elements, comparator C

sequences S| and S, of about Output sequence S sorted
n/2 elements each according to C

m Recur: recursively sort S, and if S.size() > |
SZ . o 0
m Conquer: merge S, and S, (81, 8,) < partition(S, n/2)

into a unique sorted mergeSort(S,, C)
sequence mergeSort(S,, C)
S < merge(S,, S»)

15
Merging Two Sorted Sequences
@ The conquer step of
merge—sort consists of Algorithm merge(A, B)
merging two sorted. Input sequences 4 and B with
sequences A and B into a n/2 elements each
sorteq >equence S Output sorted sequence of 4 U B
containing the union of
the elements of Aand B S « empty sequence
while —A.empty() A =B.empty()
@ Merging two sorted if A.front() < B.front()
sequences, each with n/2 S.addBack(A.front()); A.eraseFront();
elements and else
|mplemen.ted by.means of S.addBack(B.front()); B.eraseFront(),
a doubly linked list, takes while —A.empity()
O(n) time S.addBack(A.front()); A.eraseFront();
while —B.empty()
S.addBack(B.front()); B.eraseFront();,
return S

16

Merge-Sort Tree

@ An execution of merge-sort is depicted by a binary tree

m each node represents a recursive call of merge-sort and stores

+ unsorted sequence before the execution and its partition
+ sorted sequence at the end of the execution

m the root is the initial call
m the leaves are calls on subsequences of size O or 1

[72|94—)2479]

712 527] (914> 49]

757] (252|959 [454

Analysis of Merge-Sort

@ The height & of the merge-sort tree is O(log n)
m at each recursive call we divide in half the sequence,

@ The overall amount or work done at the nodes of depth i is O(n)
= we partition and merge 2/ sequences of size n/2!
= we make 2! recursive calls

@ Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

17

18

Another Analysis: Recurrence Equation (1)

@ t(n): the worst-case running time of merge-sort
@ For simplicity, n is a power of 2. Then, we have the following:

i(n) = b ifn<l1
| 2t(n/2)+cn otherwise.

4 How to compute the order of t(n)?
@ Applying the equation recursively,

t(n) = 2(2t(n/2*)+ (cn/2))+cn
= 22t(n/2%)+2(cn/2) +cn = 2*t(n/2%) + 2cn.

@ We get the following general equation:
t(n) = 2t(n/2") +icn.
@ We stop this when n/2i=1, i.e., i =log n

19

Another Analysis: Recurrence Equation (2)

@ Then, we have the following, and thus we are done.

t(n) = 2'°"(n/21°8") + (logn)cn
nt(1)+cnlogn

= nb+cnlogn.

20

Summary of Sorting Algorithms

Algorithm

Time

Notes

selection-sort

O(n?)

= slow
= in-place
= for small data sets (< 1K)

insertion-sort

O(n?)

= slow
= in-place
= for small data sets (< 1K)

heap-sort

O(n log n)

= fast
= jn-place
= for large data sets (1K — 1M)

merge-sort

O(n log n)

= fast
= sequential data access
= for huge data sets (> 1M)

Questions?

21

