

Minimum Spanning Trees

Spanning subgraph

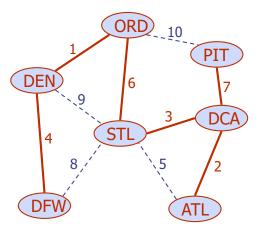
 Subgraph of a graph G containing all the vertices of G

Spanning tree

 Spanning subgraph that is itself a (free) tree

Minimum spanning tree (MST)

- Spanning tree of a weighted graph with minimum total edge weight
- Applications
 - Communications networks
 - Transportation networks



2

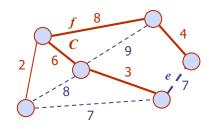
Cycle Property

Cycle Property:

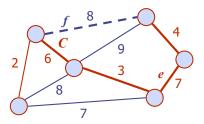
- Let T be a minimum spanning tree of a weighted graph G
- Let e be an edge of G that is not in T and C let be the cycle formed by e with T
- For every edge f of C, weight(f) ≤ weight(e)

Proof:

- By contradiction
- If weight(f) > weight(e) we can get a spanning tree of smaller weight by replacing e with f



Replacing f with e yields a better spanning tree



3

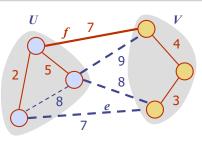
Partition Property

Partition Property:

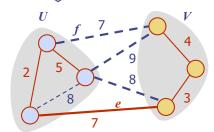
- Consider a partition of the vertices of G into subsets U and V
- Let *e* be an edge of minimum weight across the partition
- There is a minimum spanning tree of G containing edge e

Proof:

- Let *T* be an MST of *G*
- If T does not contain e, consider the cycle C formed by e with T and let f be an edge of C across the partition
- By the cycle property, $weight(f) \le weight(e)$
- Thus, weight(f) = weight(e)
- We obtain another MST by replacing f with e

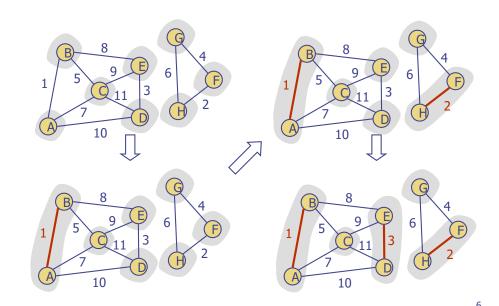


Replacing f with e yields another MST



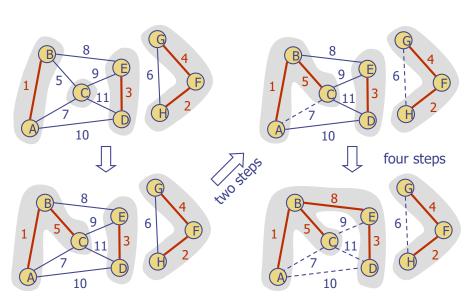
Kruskal's Algorithm

Kruskal's Algorithm: Example



5

Example (contd.)



Kruskal's Algorithm

- Maintain a partition of the vertices into clusters
 - Initially, single-vertex clusters
 - Keep an MST for each cluster
 - Merge "closest" clusters and their MSTs
- A priority queue stores the edges outside clusters
 - Key: weight
 - Element: edge
- ☐ At the end of the algorithm
 - One cluster and one MST (if connected)

Algorithm KruskalMST(G)

for each vertex v in G do Create a cluster consisting of v

let Q be a priority queue.

Insert all edges into Q

 $T \leftarrow \varnothing$

 $\{T \text{ is the union of the MSTs of the clusters}\}$

while T has fewer than n-1 edges do

 $e \leftarrow Q.removeMin().getValue()$

 $[u, v] \leftarrow G.endVertices(e)$

 $A \leftarrow getCluster(u)$

 $B \leftarrow getCluster(v)$

if $A \neq B$ then

Add edge e to T
mergeClusters(A, B)

return T

Data Structure for Kruskal's Algorithm

- The algorithm maintains a forest of trees
- ◆ A priority queue extracts the edges by increasing weight
- An edge is accepted it if connects distinct trees
- We need a data structure that maintains a partition, i.e., a collection of disjoint sets
 - To do this, we need a data structure for a set
 - These are covered in Ch. 11.4 (Page 533)

Set Operations

- We represent a set by the sorted sequence of its elements
- The basic set operations:
 - union
 - intersection
 - subtraction
- We consider
 - Sequence-based implementation

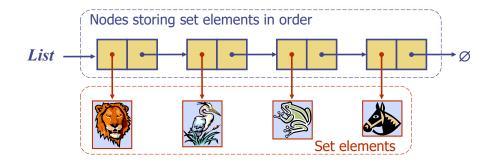
9

10

12

Example: Storing a Set in a Sorted List

- We can implement a set with a list
- Elements are stored sorted according to some canonical ordering
- ightharpoonup The space used is O(n)

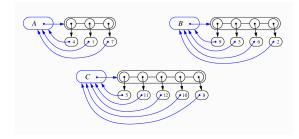


Partitions with Union-Find Operations

- Partition: A collection of disjoint sets
- Partition ADT needs to support the following functions:
 - makeSet(x): Create a singleton set containing the element x and return the position storing x in this set
 - union(A,B): Return the set A U B, destroying the old A and B
 - find(p): Return the set containing the element at position p

List-based Partition (1)

- Each set is stored in a sequence (e.g., list)
- Partition: A collection of sequences
- Each element has a reference back to the set
 - Operation find(u): takes O(1) time, and returns the set of which u is a member.
 - Operation union(A,B): we move the elements of the smaller set to the sequence of the larger set and update their references
 - Time for operation union(A,B) is min(|A|, |B|)
 - Worst-case: O(n) for one union operation



13

Partition-Based Implementation

- Partition-based version of Kruskal's Algorithm
 - Cluster merges as unions
 - Cluster locations as finds
- Running time $O((n + m) \log n)$
 - PQ operations $O(m \log n)$
 - PQ initialization: O(mlog m)
 - For each while loop
 - O(log m) = O(log n)
 - UF operations $O(n \log n)$

Algorithm KruskalMST(G) Initialize a partition P

Initialize a partition **P**

for each vertex v in G do

P.makeSet(v)

let Q be a priority queue.

Insert all edges into ${\it Q}$

 $T \leftarrow \emptyset$

{ **T** is the union of the MSTs of the clusters}

while T has fewer than n-1 edges do

 $e \leftarrow Q.removeMin().getValue()$

 $[u, v] \leftarrow G.endVertices(e)$

 $A \leftarrow P.find(u)$

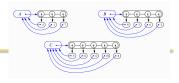
 $B \leftarrow P.find(v)$ if $A \neq B$ then

Add edge e to T

P.union(A, B)

return T

List-based Partition (2)



14

What about "amortized analysis"? (Page 539)

Proposition 11.9: Performing a series of n makeSet, union, and find operations, using the sequence-based implementation above, starting from an initially empty partition takes $O(n \log n)$ time.

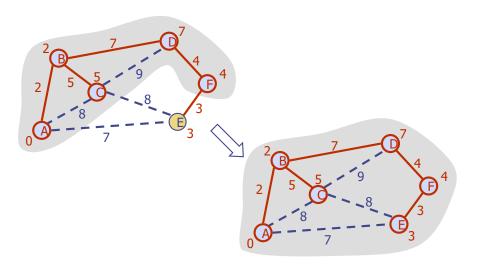
- ◆ Clearly, makeSet and find operation → O(n)
- Union operation
 - Each time we move a position from one set to another, the size of the new set at least doubles
 - Thus, each position is moved from one set to another at most *log n* times
 - We assume that the partition is initially empty, there are O(n) different elements referenced in the given series of operations. \rightarrow The total time for all the union operations is $O(n \log n)$

Prim-Janik's Algorithm

15

Example

Example (contd.)



18

20

Prim-Jarnik's Algorithm

- Similar to Dijkstra's algorithm
- We pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting from s
- ♦ We store with each vertex v label d(v) representing the smallest weight of an edge connecting v to a vertex in the cloud (see the difference from Dijkstra's algorithm?)
- At each step:
 - We add to the cloud the vertex u outside the cloud with the smallest distance label
 - We update the labels of the vertices adjacent to *u*

Prim-Jarnik's Algorithm (cont.)

- A heap-based adaptable priority queue with locationaware entries stores the vertices outside the cloud
 - Key: distance

17

- Value: vertex
- Recall that method replaceKey(l,k) changes the key of entry l
- We store three labels with each vertex:
 - Distance
 - Parent edge in MST
 - Entry in priority queue

```
Algorithm PrimJarnikMST(G)
  Q \leftarrow new heap-based priority queue
  \widetilde{s} \leftarrow a vertex of G
  for all v \in G.vertices()
     if v = s
        v.setDistance(0)
     else
        v.setDistance(\infty)
     v.setParent(\emptyset)
     l \leftarrow O.insert(v.getDistance(), v)
     v.setLocator(l)
  while \neg O.emptv()
     l \leftarrow Q.removeMin()
     u \leftarrow l.getValue()
     for all e \in u.incidentEdges()
        z \leftarrow e.opposite(u)
        r \leftarrow e.weight()
        if r < z.getDistance()
           z.setDistance(r)
           z.setParent(e)
           O.replaceKey(z.getEntry(), r)
```

19

Analysis

☐ Graph operations
 Method incidentEdges is called once for each vertex
☐ Label operations
• We set/get the distance, parent and locator labels of vertex z $O(\deg(z))$ times
 Setting/getting a label takes O(1) time
☐ Priority queue operations
■ Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes $O(\log n)$ time (total $n \ O(\log n)$)
■ The key of a vertex w in the priority queue is modified at most $deg(w)$ times, where each key change takes $O(\log n)$ time
Prim-Jarnik's algorithm runs in $O((n+m)\log n)$ time provided the graph is represented by the adjacency list structure
Recall that $\sum_{v} \deg(v) = 2m$
\square The running time is $O(m \log n)$ since the graph is connected

21

Questions?