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Minimum Spanning Trees
Spanning subgraph

n Subgraph of a graph G containing 
all the vertices of G

Spanning tree
n Spanning subgraph that is itself a 

(free) tree

Minimum spanning tree (MST)
n Spanning tree of a weighted 

graph with minimum total edge 
weight

Applications
n Communications networks
n Transportation networks
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Cycle Property
Cycle Property:

n Let T be a minimum spanning 
tree of a weighted graph G

n Let e be an edge of G that is not 
in T and C let be the cycle 
formed by e with T

n For every edge f of C, weight(f) £
weight(e)

Proof:
n By contradiction
n If weight(f) > weight(e) we can 

get a spanning tree of smaller 
weight by replacing e with f
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a better spanning tree 
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Partition Property
Partition Property:

n Consider a partition of the 
vertices of G into subsets U and 
V

n Let e be an edge of minimum
weight across the partition

n There is a minimum spanning 
tree of G containing edge e

Proof:
n Let T be an MST of G
n If T does not contain e, consider 

the cycle C formed by e with T 
and let  f be an edge of C across 
the partition

n By the cycle property,
weight(f) £ weight(e)

n Thus, weight(f) = weight(e)
n We obtain another MST by 

replacing f  with e
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Kruskal’s Algorithm

Kruskal’s Algorithm: Example
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Example (contd.)

four steps
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Kruskal’s Algorithm
q Maintain a partition of the 

vertices into clusters
n Initially, single-vertex 

clusters
n Keep an MST for each 

cluster
n Merge “closest” clusters 

and their MSTs
q A priority queue stores the 

edges outside clusters
n Key: weight
n Element: edge

q At the end of the algorithm
n One cluster and one MST

(if connected)

Algorithm KruskalMST(G)
for each vertex v in G do

Create a cluster consisting of v
let Q be a priority queue.
Insert all edges into Q
T ¬Æ
{T is the union of the MSTs of the clusters}
while T has fewer than n - 1 edges do

e ¬ Q.removeMin().getValue()
[u, v] ¬ G.endVertices(e)
A ¬ getCluster(u)
B ¬ getCluster(v) 
if A ¹ B then

Add edge e to T
mergeClusters(A, B)

return T
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Data Structure for Kruskal’s Algorithm
The algorithm maintains a forest of trees
A priority queue extracts the edges by increasing weight
An edge is accepted it if connects distinct trees

We need a data structure that maintains a partition, i.e., a 
collection of disjoint sets
n To do this, we need a data structure for a set
n These are covered in Ch. 11.4 (Page 533)
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Set Operations
We represent a set by the sorted sequence of its elements

The basic set operations:
n union
n intersection
n subtraction

We consider
n Sequence-based implementation
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Example: Storing a Set in a Sorted List
We can implement a set with a list
Elements are stored sorted according to some canonical ordering
The space used is O(n)

ÆList

Nodes storing set elements in order

Set elements
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Partitions with Union-Find Operations
Partition: A collection of disjoint sets

Partition ADT needs to support the following functions:

n makeSet(x): Create a singleton set containing the element x 
and return the position storing x in this set

n union(A,B): Return the set A U B, destroying the old A and B

n find(p): Return the set containing the element at position p
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List-based Partition (1)
Each set is stored in a sequence (e.g., list)
Partition: A collection of sequences
Each element has a reference back to the set
n Operation find(u): takes O(1) time, and returns the set of which u is a 

member.
n Operation union(A,B): we move the elements of the smaller set to the 

sequence of the larger set and update their references
w Time for operation union(A,B) is min(|A|, |B|)
w Worst-case: O(n) for one union operation
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List-based Partition (2)

What about “amortized analysis”? (Page 539)

Clearly, makeSet and find operation à O(n)
Union operation
n Each time we move a position from one set to another, the size of the new set 

at least doubles
n Thus, each position is moved from one set to another at most log n times
n We assume that the partition is initially empty, there are O(n) different 

elements referenced in the given series of operations. à The total time for all 
the union operations is O(n log n)
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Partition-Based Implementation

Partition-based version 
of Kruskal’s Algorithm 
n Cluster merges as unions 
n Cluster locations as finds

Running time O((n + m) 
log n)
n PQ operations O(m log n)

w PQ initialization: O(mlog m)
w For each while loop

n O(log m) = O(log n)

n UF operations O(n log n)

Algorithm KruskalMST(G)
Initialize a partition P
for each vertex v in G do

P.makeSet(v)
let Q be a priority queue.
Insert all edges into Q
T ¬Æ
{T is the union of the MSTs of the clusters}
while T has fewer than n - 1 edges do

e ¬ Q.removeMin().getValue()
[u, v] ¬ G.endVertices(e)
A ¬ P.find(u)
B ¬ P.find(v) 
if A ¹ B then

Add edge e to T
P.union(A, B)

return T
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Prim-Janik’s Algorithm



Example
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Example (contd.)
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Prim-Jarnik’s Algorithm
Similar to Dijkstra’s algorithm

We pick an arbitrary vertex s and we grow the MST as a cloud of 
vertices, starting from s
We store with each vertex v label d(v) representing the smallest 
weight of an edge connecting v to a vertex in the cloud 

(see the difference from Dijkstra’s algorithm?)
At each step:
n We add to the cloud the vertex u outside the cloud with the smallest 

distance label
n We update the labels of the vertices adjacent to u
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Prim-Jarnik’s Algorithm (cont.)
A heap-based adaptable 
priority queue with location-
aware entries stores the 
vertices outside the cloud
n Key: distance
n Value: vertex
n Recall that method 

replaceKey(l,k) changes the 
key of entry l

We store three labels with 
each vertex:
n Distance
n Parent edge in MST
n Entry in priority queue

Algorithm PrimJarnikMST(G)
Q ¬ new heap-based priority queue
s ¬ a vertex of G
for all v Î G.vertices()

if v = s
v.setDistance(0)

else
v.setDistance(¥)

v.setParent(Æ)
l ¬ Q.insert(v.getDistance(), v)
v.setLocator(l)

while ¬Q.empty()
l ¬ Q.removeMin()
u ¬ l.getValue()
for all e Î u.incidentEdges()

z ¬ e.opposite(u)
r ¬ e.weight()
if r < z.getDistance()

z.setDistance(r)
z.setParent(e)
Q.replaceKey(z.getEntry(), r)
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Analysis
q Graph operations

n Method incidentEdges is called once for each vertex
q Label operations

n We set/get the distance, parent and locator labels of vertex z O(deg(z)) times
n Setting/getting a label takes O(1) time

q Priority queue operations
n Each vertex is inserted once into and removed once from the priority queue, 

where each insertion or removal takes O(log n) time (total n O(log n))
n The key of a vertex w in the priority queue is modified at most deg(w) times, where 

each key change takes O(log n) time 
q Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided the graph is 

represented by the adjacency list structure

n Recall that Sv deg(v) = 2m
q The running time is O(m log n) since the graph is connected
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Questions?


