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Weighted Graphs
In a weighted graph, each edge has an associated numerical value, called the 
weight of the edge
Edge weights may represent, distances, costs, etc.
Example:
n In a  flight route graph, the weight of an edge represents the distance in miles 

between the endpoint airports
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Shortest Paths
Given a weighted graph and two vertices u and v, we want to find a path of 
minimum total weight between u and v.
n Length of a path is the sum of the weights of its edges.

Example:
n Shortest path between Providence and Honolulu

Applications
n Internet packet routing 
n Flight reservations
n Driving directions
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Shortest Path Properties
Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other vertices
Example:

Tree of shortest paths from Providence (PVD)

ORD PVD

MIA
DFW

SFO

LAX

LGA
HNL

849

80
2

1387
174
3

1843

1099
1120

1233

337

2555

142 1205

4



Our goal and Initial Ideas
Goal
n Given a source vertex s, I want to compute the shortest paths 

to all other vertices

Initial Ideas
n Compute all the paths from the source s to other vertices
n Take the minimums 
n How much complexity? 

w Exponential (not a polynomial time algorithm)

n Why is this algorithm stupid?
w Ignore the wisdom from computing the minimum path for computing 

other minimum paths
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Dijkstra’s Algorithm (1)
The distance of a vertex v from a 
vertex s is the length of a shortest 
path between s and v

Dijkstra’s algorithm computes the 
distances of all the vertices from 
a given start vertex s

Assumptions:
n the graph is connected
n the edges are undirected
n the edge weights are 

nonnegative

We grow a “cloud” of vertices, 
beginning with s and eventually 
covering all the vertices
n Remember the “wisdom”

Example
n What is your distance to ”Obama” in 

facebook? 50

n Suppose that MoonJaein becomes your 
friend

n What is your distance to “Obama” then?
w Probably much shorter than 50. Maybe 2? J
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Example first
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Example (cont.)
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Dijkstra’s Algorithm (2)
We store with each vertex v a label d(v)
representing the distance of v from s in 
the subgraph consisting of the cloud 
and its adjacent vertices

At each step
n We add to the cloud the vertex u 

outside the cloud with the smallest 
distance label, d(u)

n We update the labels of the vertices 
adjacent to u

n Greedy method: we solve the problem 
at hand by repeatedly selecting the best 
choice from among those available in 
each iteration
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Edge Relaxation
Consider an edge e = (u,z) such 
that
n u is the vertex most recently 

added to the cloud
n z is not in the cloud

The relaxation of edge e updates 
distance d(z) as follows:
d(z) ¬ min{d(z),d(u) + weight(e)}

d(z) = 75
d(u) = 50
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Recall: Priority Queue ADT
A priority queue stores a 
collection of entries
Typically, an entry is a pair
(key, value), where the key 
indicates the priority
Main methods of the Priority 
Queue ADT
n insert(e) inserts an entry e 
n removeMin()

removes the entry with smallest 
key

Additional methods
n min()

returns, but does not remove, an 
entry with smallest key

n size(), empty()
Applications:
n Standby flyers
n Auctions
n Stock market
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Dijkstra’s Algorithm
A heap-based adaptable 
priority queue with location-
aware entries stores the 
vertices outside the cloud
n Key: distance
n Value: vertex
n Recall that method 

replaceKey(l,k) changes the 
key of entry l with k

We store two labels with each 
vertex:
n Distance
n Entry in priority queue

We take out the vertex with 
the minimum distance so far

Algorithm DijkstraDistances(G, s)
Q ¬ new heap-based priority queue
for all v Î G.vertices()

if v = s
v.setDistance(0)

else
v.setDistance(¥)

l ¬ Q.insert(v.getDistance(), v)
v.setEntry(l)

while ¬Q.empty()
l ¬ Q.removeMin()
u ¬ l.getValue() // take out the closest node
for all e Î u.incidentEdges() { relax e }

z ¬ e.opposite(u)
r ¬ u.getDistance() + e.weight()
if r < z.getDistance()

z.setDistance(r)
Q.replaceKey(z.getEntry(), r)
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Why Dijkstra’s Algorithm Works
Dijkstra’s algorithm is based on the greedy method. It adds 
vertices by increasing distance.

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

n Suppose it didn’t find all shortest 
distances. Let F be the first wrong 
vertex the algorithm processed.

n When the previous node, D, on the 
true shortest path was considered, its 
distance was correct

n But the edge (D,F) was relaxed at that 
time!

n Thus, so long as d(F)>d(D), F’s distance 
cannot be wrong.  That is, there is no 
wrong vertex

n (Question) Why not working for non-
negative weight?
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Analysis of Dijkstra’s Algorithm
Graph operations
n incidentEdges is called once for each v

Label operations
n We set/get the distance and locator labels 

of vertex z, O(deg(z)) times
n Setting/getting a label takes O(1) time

Priority queue operations
n Each v is inserted once into and removed 

once from the PQ, where each insertion or 
removal takes O(log n) time à total 
nO(log n)

n The key of a vertex in the PQ is modified at 
most deg(v) times, where each key change 
takes O(log n) time

Dijkstra’s algorithm runs in O((n + m) log n)
time provided the graph is represented by 
the adjacency list structure
n Recall that Sv deg(v) = 2m

The running time can also be expressed as 
O(m log n) since the graph is connected
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Algorithm DijkstraDistances(G, s)
Q ¬ new heap-based priority queue
for all v Î G.vertices()

if v = s
v.setDistance(0)

else
v.setDistance(¥)

l ¬ Q.insert(v.getDistance(), v)
v.setEntry(l)

while ¬Q.empty()
l ¬ Q.removeMin()
u ¬ l.getValue() // take out the closest node
for all e Î u.incidentEdges() { relax e }

z ¬ e.opposite(u)
r ¬ u.getDistance() + e.weight()
if r < z.getDistance()

z.setDistance(r)
Q.replaceKey(z.getEntry(), r)



Questions?


