NID

Shortest Paths

/N

Weighted Graphs

@ In a weighted graph, each edge has an associated numerical value, called the
weight of the edge

@ Edge weights may represent, distances, costs, etc.

@ Example:
m Ina flight route graph, the weight of an edge represents the distance in miles
between the endpoint airports

Shortest Paths

@ Given a weighted graph and two vertices # and v, we want to find a path of
minimum total weight between u and v.

m Length of a path is the sum of the weights of its edges.
@ Example:

m Shortest path between Providence and Honolulu
@ Applications

= Internet packet routing

m Flight reservations

m Driving directions

Shortest Path Properties

Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other vertices
Example:

Tree of shortest paths from Providence (PVD)

Our goal and Initial Ideas

< Goal

m Given a source vertex s, | want to compute the shortest paths
to all other vertices

@ |nitial Ideas
s Compute all the paths from the source s to other vertices
m Take the minimums

s How much complexity?
+ Exponential (not a polynomial time algorithm)
s Why is this algorithm stupid?

¢ |lgnore the wisdom from computing the minimum path for computing
other minimum paths

Dijkstra’s Algorithm (1)

@ The distance of a vertex v from a ® We grow a “cloud” of vertices,
vertex s is the length of a shortest beginning with s and eventually
path between s and v covering all the vertices

m Remember the “wisdom”

@ Dijkstra’s algorithm computes the
distances of all the vertices from @ Example

a given start vertex s = What is your distance to ”"Obama” in
facebook? 50

¢ Assumptions: m Suppose that MoonlJaein becomes your

m the graphis connected friend
m the edges are undirected

s the edge weights are s Whatis your distance to “Obama” then?
nonnegative * Probably much shorter than 50. Maybe 2? ©

Example first

Example (cont.)

Dijkstra’s Algorithm (2)

@

We store with each vertex v a label d(v)
representing the distance of v from s in
the subgraph consisting of the cloud
and its adjacent vertices

At each step

m We add to the cloud the vertex u
outside the cloud with the smallest
distance label, d(u)

s We update the labels of the vertices
adjacentto u

s Greedy method: we solve the problem
at hand by repeatedly selecting the best

choice from among those available in
each iteration

Raise your quality standards as high as you can live with, avoid wasting
your time on routine problems, and always try to work as closely as
possible at the boundary of your abilities. Do this, because it is the only
way of discovering how that boundary should be moved forward.

Edsger Dijkstra

Edge Relaxation

@ Consider an edge e =(u,z) such

that |
m uisthevertex mostrecenty . Dlstance.to Z.,
added to the cloud /,/"’/”d(u) _ 5(‘)\) not considering u
= Zzisnotin the cloud 10 d(z) =75

@ The relaxation of edge e updates *
distance d(z) as follows:

d(z) < min{d(z),d(u) + weight(e)} ﬂ
Distance to z,
"""""""" 50° considering u
ISt (). 10 d(z)=060
\ 4

10

Recall: Priority Queue ADT

@ A priority queue stores a
collection of entries

@ Typically, an entry is a pair
(key, value), where the key
indicates the priority

@ Main methods of the Priority
Queue ADT

insert(e) inserts an entry e

removeMin()
removes the entry with smallest
key

#® Additional methods

min()
returns, but does not remove, an
entry with smallest key

size(), empty()

@ Applications:

Standby flyers
Auctions
Stock market

11

Dijkstra’s Algorithm

@ A heap-based adaptable

priority queue with location-
aware entries stores the
vertices outside the cloud

Algorithm DijkstraDistances(G, s)
0 < new heap-based priority queue
for all v € G.vertices()

m Key: distance if v=gs
= Value: vertex v.setDistance(0)
= Recall that method else
replaceKey(L,k) changes the v.setDistance(o)
key of entry I with k | < Q.insert(v.getDistance(), v)
@ We store two labels with each v.setEntry(l)
vertex: while —0.empiy()

| < Q.removeMin()
u < LgetValue() // take out the closest node
for all e € u.incidentEdges() { relax e }

7 < e.opposite(u)

m Distance
m Entryin priority queue

@ We take out the vertex with r < u.getDistance() + e.weight()
the minimum distance so far if r < z.getDistance()
z.setDistance(r)

Q.replaceKey(z.getEntry(), r)

13

il

14

Why Dijkstra’s Algorithm Works

@ Dijkstra’s algorithm is based on the greedy method. It adds
vertices by increasing distance.

m Suppose it didn’t find all shortest
distances. Let F be the first wrong
vertex the algorithm processed.

s When the previous node, D, on the
true shortest path was considered, its
distance was correct

m But the edge (D,F) was relaxed at that
time!

m Thus, so long as d(F)>d(D), F’s distance
cannot be wrong. That is, there is no
wrong vertex

m (Question) Why not working for non-
negative weight?

15

Analysis of Dijkstra’s Algorithm

@

@

Graph operations
m incidentEdges is called once for each v

Label operations

m We set/get the distance and locator labels
of vertex z, O(deg(z)) times

m Setting/getting a label takes O(1) time

Priority queue operations

m Eachvisinserted once into and removed
once from the PQ, where each insertion or
removal takes O(log n) time = total
nO(log n)

m The key of a vertex in the PQ is modified at
most deg(v) times, where each key change
takes O(log n) time

Dijkstra’s algorithm runs in O((n + m) log n)
time provided the graph is represented by
the adjacency list structure

= Recall that 2, deg(v) = 2m

The running time can also be expressed as
O(m log n) since the graph is connected

Algorithm DijkstraDistances(G, s)
0 < new heap-based priority queue
for all v € G.vertices()
if v=s
v.setDistance(0)
else
v.setDistance()
| < Q.insert(v.getDistance(), v)
v.setEntry(l)
while —Q.empiy()
| < Q.removeMin()
u < lL.getValue() // take out the closest node
for all e € u.incidentEdges() { relax e }
7 < e.opposite(u)
r < u.getDistance() + e.weight()
if r <z.getDistance()
z.setDistance(r)
Q.replaceKey(z.getEntry(), r)

16

Questions?

