
Graphs: Basics
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Real Life Examples
On-line/Off-line Social Network
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Real Life Examples
Internet Connectivity
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Real Life Examples
WebBlog Connections
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Real Life Examples
Navigator
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Other Applications
Electronic circuits
n Printed circuit board
n Integrated circuit

Transportation networks
n Highway network
n Flight network

Computer networks
n Local area network
n Internet
n Web

Databases
n Entity-relationship diagram
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Graphs
A graph is a pair (V, E), where
n V is a set of nodes, called vertices
n E is a collection of pairs of vertices, called edges
n Vertices and edges are positions and store elements

Example:
n A vertex represents an airport and stores the three-letter airport code
n An edge represents a flight route between two airports and stores the mileage of 

the route
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Edge Types
Directed edge
n ordered pair of vertices (u,v)
n first vertex u is the origin
n second vertex v is the 

destination
n e.g., a flight

Undirected edge
n unordered pair of vertices (u,v)
n e.g., a flight route

Directed graph
n all the edges are directed
n e.g., route network

Undirected graph
n all the edges are undirected
n e.g., flight network

ORD PVD
flight
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Terminology
End vertices (or endpoints) of an 
edge
n U and V are the endpoints of a

Edges incident on a vertex
n a, d, and b are incident on V

Adjacent vertices
n U and V are adjacent

Degree of a vertex
n X has degree 5 

Parallel edges
n h and i are parallel edges

Self-loop
n j is a self-loop
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Terminology (cont.)
Path
n sequence of alternating vertices 

and edges 
n begins with a vertex
n ends with a vertex
n each edge is preceded and 

followed by its endpoints
Simple path
n path such that all its vertices and 

edges are distinct
Examples
n P1=(V,b,X,h,Z) is a simple path
n P2=(U,c,W,e,X,g,Y,f,W,d,V) is a 

path that is not simple
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Terminology (cont.)
Cycle
n circular sequence of alternating 

vertices and edges 
n each edge is preceded and 

followed by its endpoints
Simple cycle
n cycle such that all its vertices and 

edges are distinct
Examples
n C1=(V,b,X,g,Y,f,W,c,U,a,¿) is a 

simple cycle
n C2=(U,c,W,e,X,g,Y,f,W,d,V,a,¿) is 

a cycle that is not simple

Note) Tree is a graph without 
cycles
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Subgraphs
A subgraph S of a graph G is 
a graph such that 
n The vertices of S are a subset 

of the vertices of G
n The edges of S are a subset of 

the edges of G

A spanning subgraph of G is 
a subgraph that contains all 
the vertices of G

Subgraph

Spanning subgraph
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Connectivity
A graph is connected if 
there is a path between 
every pair of vertices

A connected component 
of a graph G is a maximal 
connected subgraph of G

“Maximal”?

Connected graph

Non connected graph with two 
connected components
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Trees and Forests
A (free) tree is an 
undirected graph T such 
that
n T is connected
n T has no cycles
This definition of tree is 

different from the one of a 
rooted tree

A forest is an undirected 
graph without cycles

The connected components 
of a forest are trees

Tree

Forest
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Spanning Trees and Forests
A spanning tree of a connected 
graph is a spanning subgraph that 
is a tree

A spanning tree is not unique 
unless the graph is a tree

Spanning trees have applications 
to the design of communication 
networks

A spanning forest of a graph is a 
spanning subgraph that is a forest

Graph

Spanning tree
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Some Properties for Undirected Graphs

Notation
n number of vertices
m number of edges

deg(v) degree of vertex v

Property 1
Sv deg(v) = 2m
Proof: each edge is counted 

twice
Property 2

In an undirected graph with 
no self-loops and no 
multiple edges
m £ n (n - 1)/2

Proof: each vertex has 
degree at most (n - 1)

What is the bound for a 
directed graph?

Example
n n = 4
n m = 6
n deg(v) = 3
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Main Methods of the Graph ADT
Vertices and edges
n are positions
n store elements

Accessor methods
n e.endVertices(): a list of the two 

endvertices of e
n e.opposite(v): the vertex 

opposite of v on e
n u.isAdjacentTo(v): true iff u and v 

are adjacent
n *v: reference to element 

associated with vertex v
n *e: reference to element 

associated with edge e

Update methods
n insertVertex(o): insert a vertex 

storing element o
n insertEdge(v, w, o): insert an edge 

(v,w) storing element o
n eraseVertex(v): remove vertex v 

(and its incident edges)
n eraseEdge(e): remove edge e

Iterable collection methods
n incidentEdges(v): list of edges 

incident to v
n vertices(): list of all vertices in the 

graph
n edges(): list of all edges in the 

graph
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What is a data structure to represent a graph?

We will discuss three ways



1. Edge List Structure
Vertex object
n element
n reference to position in vertex 

sequence

Edge object
n element
n origin vertex object
n destination vertex object
n reference to position in edge 

sequence

Vertex sequence (e.g., list)
n sequence of vertex objects

Edge sequence (e.g., list)
n sequence of edge objects

v

u

w

a c
b
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z
d

u v w z

b c d
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Performance
§ n vertices, m edges
§ no parallel edges
§ no self-loops

Edge
List

Adjacency
List

Adjacency 
Matrix

Space n + m n + m n2

v.incidentEdges() m deg(v) n
u.isAdjacentTo (v) m min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1
eraseVertex(v) m deg(v) n2

eraseEdge(e) 1 1 1

20

v.incidentEdges() and u.isAdjacneTo(v)
n Need to check all the edges



2. Adjacency List Structure
Basic: Edge list structure

Supports direct access to 
the incident edges from a 
node
n Incidence edge 

sequence for each 
vertex

Augmented edge objects
n references to 

associated positions in 
incidence sequences of 
end vertices

Provides direct access
n From the edges to the 

vertices
n From the vertices to 

their incident edges

u
v

w
a b

a

u v w

b
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Performance
§ n vertices, m edges
§ no parallel edges
§ no self-loops

Edge
List

Adjacency
List

Adjacency 
Matrix

Space n + m n + m n2

v.incidentEdges() m deg(v) n
u.isAdjacentTo (v) m min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1
eraseVertex(v) m deg(v) n2

eraseEdge(e) 1 1 1
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v.incidentEdges(): direct access to incident edges
u.isAdjacentTo(v): 



3. Adjacency Matrix Structure
Edge list structure

Augmented vertex 
objects
n Integer key (index) 

associated with 
vertex

2D-array adjacency 
array
n Reference to edge 

object for adjacent 
vertices

n Null for non 
nonadjacent vertices

The “old fashioned” 
version just has 0 for 
no edge and 1 for edge

u
v

w
a b

0 1 2
0 Æ Æ

1 Æ

2 Æ Æa

u v w0 1 2

b
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Performance
§ n vertices, m edges
§ no parallel edges
§ no self-loops

Edge
List

Adjacency
List

Adjacency 
Matrix

Space n + m n + m n2

v.incidentEdges() m deg(v) n
u.isAdjacentTo (v) m min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1
eraseVertex(v) m deg(v) n2

eraseEdge(e) 1 1 1
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v.incidentEdges(): matrix row check
u.isAdjacentTo(v): using v’s key



Performance
§ n vertices, m edges
§ no parallel edges
§ no self-loops

Edge
List

Adjacency
List

Adjacency 
Matrix

Space n + m n + m n2

v.incidentEdges() m deg(v) n
u.isAdjacentTo (v) m min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1
eraseVertex(v) m deg(v) n2

eraseEdge(e) 1 1 1
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v.incidentEdges(): direct access to incident edges
u.isAdjacentTo(v): 



Depth-First Search
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Depth-First Search
Depth-first search (DFS) is a general technique for traversing a 
graph

Why is this traversal important?

Let’s first see the example
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Example
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A visited vertex
A unexplored vertex

unexplored edge
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Example (cont.)
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Depth-First Search
A DFS traversal of a graph G 
n Visits all the vertices and 

edges of G
n Determines whether G is 

connected (how?)
n Computes the connected 

components of G (how?)
n Computes a spanning forest 

of G

DFS on a graph with n
vertices and m edges takes 
O(n + m ) time

DFS can be further extended 
to solve other graph 
problems
n Find and report a path between 

two given vertices
n Find a cycle in the graph
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DFS Algorithm
The algorithm uses a mechanism for 
setting and getting “labels” of 
vertices and edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G

in the connected component of v
as discovery edges and back edges

v.setLabel(VISITED)
for all e Î G.incidentEdges(v)

if e.getLabel() = UNEXPLORED
w ¬ e.opposite(v)
if w.getLabel() = UNEXPLORED

e.setLabel(DISCOVERY)
DFS(G, w)

else
e.setLabel(BACK)

Algorithm DFS(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u Î G.vertices()
u.setLabel(UNEXPLORED)

for all e Î G.edges()
e.setLabel(UNEXPLORED)

for all v Î G.vertices()
if v.getLabel() = UNEXPLORED

DFS(G, v)
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DFS and Maze Traversal 
The DFS algorithm is similar 
to a classic strategy for 
exploring a maze
n We mark each intersection, 

corner and dead end (vertex) 
visited

n We mark each corridor (edge) 
traversed

n We keep track of the path 
back to the entrance (start 
vertex) by means of a rope 
(recursion stack)
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Properties of DFS

Property 1
DFS(G, v) visits all the 
vertices and edges in the 
connected component of 
v

Property 2
The discovery edges 
labeled by DFS(G, v) 
form a spanning tree of 
the connected component 
of v

DB

A

C

E
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Analysis of DFS
Setting/getting a vertex/edge label takes O(1) time
Each vertex is labeled twice 
n once as UNEXPLORED
n once as VISITED

Each edge is labeled twice
n once as UNEXPLORED
n once as DISCOVERY or BACK

Method incidentEdges is called once for each vertex
n Complexity of v.incidentEdges: deg(v)

DFS runs in O(n + m) time provided the graph is represented by 
the adjacency list structure
n Recall that Sv deg(v) = 2m
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Path Finding
We can specialize the DFS 
algorithm to find a path between 
two given vertices u and z using 
the template method pattern

We call DFS(G, u) with u as the 
start vertex

We use a stack S to keep track of 
the path between the start vertex 
and the current vertex

As soon as destination vertex z is 
encountered, we return the path 
as the contents of the stack 

Algorithm pathDFS(G, v, z)
v.setLabel(VISITED)
S.push(v)
if  v = z

return S.elements()
for all e Î v.incidentEdges()

if e.getLabel() = UNEXPLORED
w ¬ e.opposite(v)
if w.getLabel() = UNEXPLORED

e.setLabel(DISCOVERY)
S.push(e)
pathDFS(G, w, z)
S.pop(e)

else
e.setLabel(BACK)

S.pop(v)

36



Cycle Finding
We can specialize the DFS 
algorithm to find a simple cycle 
using the template method 
pattern

We use a stack S to keep track of 
the path between the start vertex 
and the current vertex

As soon as a back edge (v, w) is 
encountered, we return the cycle 
as the portion of the stack from 
the top to vertex w

Algorithm cycleDFS(G, v, z)
v.setLabel(VISITED)
S.push(v)
for all e Î v.incidentEdges()

if e.getLabel() = UNEXPLORED
w ¬ e.opposite(v)
S.push(e)
if w.getLabel() = UNEXPLORED

e.setLabel(DISCOVERY)
pathDFS(G, w, z)
S.pop(e)

else
T ¬ new empty stack
repeat

o ¬ S.pop()
T.push(o)

until o = w
return T.elements()

S.pop(v)
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Breadth-First Search
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Breadth-First Search
Breadth-first search (BFS) is 
another general technique 
for traversing a graph

Let’s look at the example
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Example
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Example (cont.)
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Example (cont.)
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Breadth-First Search
A BFS traversal of a graph G 
n Visits all the vertices and 

edges of G
n Determines whether G is 

connected
n Computes the connected 

components of G
n Computes a spanning forest 

of G

BFS on a graph with n vertices 
and m edges takes O(n + m )
time
BFS can be further extended 
to solve other graph 
problems
n Find and report a path between 

two given vertices
n Can label each vertex by the 

length of a shortest path (in 
terms of # of edges) from the 
start vertex s 

n Find a simple cycle, if there is 
one
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BFS Algorithm
The algorithm uses a mechanism for 
setting and getting “labels” of 
vertices and edges

Algorithm BFS(G, s)
L0¬ new empty sequence
L0.insertBack(s)
s.setLabel(VISITED)
i ¬ 0
while ¬Li.empty()

Li +1¬ new empty sequence
for all v Î Li.elements() 

for all e Î v.incidentEdges()
if e.getLabel() = UNEXPLORED

w ¬ e.opposite(v)
if  w.getLabel() = UNEXPLORED

e.setLabel(DISCOVERY)
w.setLabel(VISITED)
Li +1.insertBack(w)

else
e.setLabel(CROSS)

i ¬ i +1

Algorithm BFS(G)
Input graph G
Output labeling of the edges 

and partition of the 
vertices  of G 

for all u Î G.vertices()
u.setLabel(UNEXPLORED)

for all e Î G.edges()
e.setLabel(UNEXPLORED)

for all v Î G.vertices()
if v.getLabel() = UNEXPLORED

BFS(G, v)
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Properties
Notation

Gs: connected component of s
Property 1

BFS(G, s) visits all the vertices 
and edges of Gs

Property 2
The discovery edges labeled by 
BFS(G, s) form a spanning tree 
Ts of Gs

Property 3
For each vertex v in Li
n The path of  Ts from s to v has i

edges 
n Every path from s to v in Gs has 

at least i edges (i.e., find a 
shortest path)
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Analysis
Setting/getting a vertex/edge label takes O(1) time
Each vertex is labeled twice 
n once as UNEXPLORED
n once as VISITED

Each edge is labeled twice
n once as UNEXPLORED
n once as DISCOVERY or CROSS

Each vertex is inserted once into a sequence Li
Method incidentEdges is called once for each vertex
BFS runs in O(n + m) time provided the graph is represented by 
the adjacency list structure
n Recall that Sv deg(v) = 2m
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Applications
Using the template method pattern, we can specialize 
the BFS traversal of a graph G to solve the following 
problems in O(n + m) time
n Compute the connected components of G
n Compute a spanning forest of G
n Find a simple cycle in G, or report that G is a forest
n Given two vertices of G, find a path in G between them with 

the minimum number of edges, or report that no such path 
exists
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DFS vs. BFS
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DFS BFS

Applications DFS BFS
Spanning forest, connected 
components, paths, cycles Ö Ö

Shortest paths Ö

Biconnected components 
(how?) Ö
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Biconnected components:
- Connected
- Even after removing any

vertex the graph remains
connected



DFS vs. BFS (cont.)

Back edge (v,w)
n w is an ancestor of v in the 

tree of discovery edges

Cross edge (v,w)
n w is in the same level as v

or in the next level
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F
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F

DFS BFS
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Questions?


