
Graphs: Basics

ORD

DFW

SFO

LAX

80
2

174
3

1843

1233

337

1

Real Life Examples
On-line/Off-line Social Network

2

Real Life Examples
Internet Connectivity

3

Real Life Examples
WebBlog Connections

4

Real Life Examples
Navigator

5

Other Applications
Electronic circuits
n Printed circuit board
n Integrated circuit

Transportation networks
n Highway network
n Flight network

Computer networks
n Local area network
n Internet
n Web

Databases
n Entity-relationship diagram

John

DavidPaul

brown.edu

cox.net

cs.brown.edu

att.net
qwest.net

math.brown.edu

cslab1bcslab1a

6

Graphs
A graph is a pair (V, E), where
n V is a set of nodes, called vertices
n E is a collection of pairs of vertices, called edges
n Vertices and edges are positions and store elements

Example:
n A vertex represents an airport and stores the three-letter airport code
n An edge represents a flight route between two airports and stores the mileage of

the route

ORD PVD

MIA
DFW

SFO

LAX

LGA
HNL

849

80
2

1387174
3

1843

1099
1120

1233

337

2555

142

7

Edge Types
Directed edge
n ordered pair of vertices (u,v)
n first vertex u is the origin
n second vertex v is the

destination
n e.g., a flight

Undirected edge
n unordered pair of vertices (u,v)
n e.g., a flight route

Directed graph
n all the edges are directed
n e.g., route network

Undirected graph
n all the edges are undirected
n e.g., flight network

ORD PVD
flight
AA 1206

ORD PVD849
miles

8

Terminology
End vertices (or endpoints) of an
edge
n U and V are the endpoints of a

Edges incident on a vertex
n a, d, and b are incident on V

Adjacent vertices
n U and V are adjacent

Degree of a vertex
n X has degree 5

Parallel edges
n h and i are parallel edges

Self-loop
n j is a self-loop

XU

V

W

Z

Y

a

c

b

e
d

f

g

h

i

j

9

Terminology (cont.)
Path
n sequence of alternating vertices

and edges
n begins with a vertex
n ends with a vertex
n each edge is preceded and

followed by its endpoints
Simple path
n path such that all its vertices and

edges are distinct
Examples
n P1=(V,b,X,h,Z) is a simple path
n P2=(U,c,W,e,X,g,Y,f,W,d,V) is a

path that is not simple

P1
XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2

10

Terminology (cont.)
Cycle
n circular sequence of alternating

vertices and edges
n each edge is preceded and

followed by its endpoints
Simple cycle
n cycle such that all its vertices and

edges are distinct
Examples
n C1=(V,b,X,g,Y,f,W,c,U,a,¿) is a

simple cycle
n C2=(U,c,W,e,X,g,Y,f,W,d,V,a,¿) is

a cycle that is not simple

Note) Tree is a graph without
cycles

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2

11

Subgraphs
A subgraph S of a graph G is
a graph such that
n The vertices of S are a subset

of the vertices of G
n The edges of S are a subset of

the edges of G

A spanning subgraph of G is
a subgraph that contains all
the vertices of G

Subgraph

Spanning subgraph

12

Connectivity
A graph is connected if
there is a path between
every pair of vertices

A connected component
of a graph G is a maximal
connected subgraph of G

“Maximal”?

Connected graph

Non connected graph with two
connected components

13

Trees and Forests
A (free) tree is an
undirected graph T such
that
n T is connected
n T has no cycles
This definition of tree is

different from the one of a
rooted tree

A forest is an undirected
graph without cycles

The connected components
of a forest are trees

Tree

Forest

14

Spanning Trees and Forests
A spanning tree of a connected
graph is a spanning subgraph that
is a tree

A spanning tree is not unique
unless the graph is a tree

Spanning trees have applications
to the design of communication
networks

A spanning forest of a graph is a
spanning subgraph that is a forest

Graph

Spanning tree

15

Some Properties for Undirected Graphs

Notation
n number of vertices
m number of edges

deg(v) degree of vertex v

Property 1
Sv deg(v) = 2m
Proof: each edge is counted

twice
Property 2

In an undirected graph with
no self-loops and no
multiple edges
m £ n (n - 1)/2

Proof: each vertex has
degree at most (n - 1)

What is the bound for a
directed graph?

Example
n n = 4
n m = 6
n deg(v) = 3

16

Main Methods of the Graph ADT
Vertices and edges
n are positions
n store elements

Accessor methods
n e.endVertices(): a list of the two

endvertices of e
n e.opposite(v): the vertex

opposite of v on e
n u.isAdjacentTo(v): true iff u and v

are adjacent
n *v: reference to element

associated with vertex v
n *e: reference to element

associated with edge e

Update methods
n insertVertex(o): insert a vertex

storing element o
n insertEdge(v, w, o): insert an edge

(v,w) storing element o
n eraseVertex(v): remove vertex v

(and its incident edges)
n eraseEdge(e): remove edge e

Iterable collection methods
n incidentEdges(v): list of edges

incident to v
n vertices(): list of all vertices in the

graph
n edges(): list of all edges in the

graph

17

18

What is a data structure to represent a graph?

We will discuss three ways

1. Edge List Structure
Vertex object
n element
n reference to position in vertex

sequence

Edge object
n element
n origin vertex object
n destination vertex object
n reference to position in edge

sequence

Vertex sequence (e.g., list)
n sequence of vertex objects

Edge sequence (e.g., list)
n sequence of edge objects

v

u

w

a c
b

a

z
d

u v w z

b c d

19

Performance
§ n vertices, m edges
§ no parallel edges
§ no self-loops

Edge
List

Adjacency
List

Adjacency
Matrix

Space n + m n + m n2

v.incidentEdges() m deg(v) n
u.isAdjacentTo (v) m min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1
eraseVertex(v) m deg(v) n2

eraseEdge(e) 1 1 1

20

v.incidentEdges() and u.isAdjacneTo(v)
n Need to check all the edges

2. Adjacency List Structure
Basic: Edge list structure

Supports direct access to
the incident edges from a
node
n Incidence edge

sequence for each
vertex

Augmented edge objects
n references to

associated positions in
incidence sequences of
end vertices

Provides direct access
n From the edges to the

vertices
n From the vertices to

their incident edges

u
v

w
a b

a

u v w

b

21

Performance
§ n vertices, m edges
§ no parallel edges
§ no self-loops

Edge
List

Adjacency
List

Adjacency
Matrix

Space n + m n + m n2

v.incidentEdges() m deg(v) n
u.isAdjacentTo (v) m min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1
eraseVertex(v) m deg(v) n2

eraseEdge(e) 1 1 1

22

v.incidentEdges(): direct access to incident edges
u.isAdjacentTo(v):

3. Adjacency Matrix Structure
Edge list structure

Augmented vertex
objects
n Integer key (index)

associated with
vertex

2D-array adjacency
array
n Reference to edge

object for adjacent
vertices

n Null for non
nonadjacent vertices

The “old fashioned”
version just has 0 for
no edge and 1 for edge

u
v

w
a b

0 1 2
0 Æ Æ

1 Æ

2 Æ Æa

u v w0 1 2

b

23

Performance
§ n vertices, m edges
§ no parallel edges
§ no self-loops

Edge
List

Adjacency
List

Adjacency
Matrix

Space n + m n + m n2

v.incidentEdges() m deg(v) n
u.isAdjacentTo (v) m min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1
eraseVertex(v) m deg(v) n2

eraseEdge(e) 1 1 1

24

v.incidentEdges(): matrix row check
u.isAdjacentTo(v): using v’s key

Performance
§ n vertices, m edges
§ no parallel edges
§ no self-loops

Edge
List

Adjacency
List

Adjacency
Matrix

Space n + m n + m n2

v.incidentEdges() m deg(v) n
u.isAdjacentTo (v) m min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1
eraseVertex(v) m deg(v) n2

eraseEdge(e) 1 1 1

25

v.incidentEdges(): direct access to incident edges
u.isAdjacentTo(v):

Depth-First Search

DB

A

C

E

26

Depth-First Search
Depth-first search (DFS) is a general technique for traversing a
graph

Why is this traversal important?

Let’s first see the example

27

DB

A

C

E

Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge
back edge

A visited vertex
A unexplored vertex

unexplored edge

28

Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

29One implication: discovery edges form a spanning tree.

Depth-First Search
A DFS traversal of a graph G
n Visits all the vertices and

edges of G
n Determines whether G is

connected (how?)
n Computes the connected

components of G (how?)
n Computes a spanning forest

of G

DFS on a graph with n
vertices and m edges takes
O(n + m) time

DFS can be further extended
to solve other graph
problems
n Find and report a path between

two given vertices
n Find a cycle in the graph

30

DFS Algorithm
The algorithm uses a mechanism for
setting and getting “labels” of
vertices and edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G

in the connected component of v
as discovery edges and back edges

v.setLabel(VISITED)
for all e Î G.incidentEdges(v)

if e.getLabel() = UNEXPLORED
w ¬ e.opposite(v)
if w.getLabel() = UNEXPLORED

e.setLabel(DISCOVERY)
DFS(G, w)

else
e.setLabel(BACK)

Algorithm DFS(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u Î G.vertices()
u.setLabel(UNEXPLORED)

for all e Î G.edges()
e.setLabel(UNEXPLORED)

for all v Î G.vertices()
if v.getLabel() = UNEXPLORED

DFS(G, v)

31

32

DFS and Maze Traversal
The DFS algorithm is similar
to a classic strategy for
exploring a maze
n We mark each intersection,

corner and dead end (vertex)
visited

n We mark each corridor (edge)
traversed

n We keep track of the path
back to the entrance (start
vertex) by means of a rope
(recursion stack)

33

Properties of DFS

Property 1
DFS(G, v) visits all the
vertices and edges in the
connected component of
v

Property 2
The discovery edges
labeled by DFS(G, v)
form a spanning tree of
the connected component
of v

DB

A

C

E

34

Analysis of DFS
Setting/getting a vertex/edge label takes O(1) time
Each vertex is labeled twice
n once as UNEXPLORED
n once as VISITED

Each edge is labeled twice
n once as UNEXPLORED
n once as DISCOVERY or BACK

Method incidentEdges is called once for each vertex
n Complexity of v.incidentEdges: deg(v)

DFS runs in O(n + m) time provided the graph is represented by
the adjacency list structure
n Recall that Sv deg(v) = 2m

35

Path Finding
We can specialize the DFS
algorithm to find a path between
two given vertices u and z using
the template method pattern

We call DFS(G, u) with u as the
start vertex

We use a stack S to keep track of
the path between the start vertex
and the current vertex

As soon as destination vertex z is
encountered, we return the path
as the contents of the stack

Algorithm pathDFS(G, v, z)
v.setLabel(VISITED)
S.push(v)
if v = z

return S.elements()
for all e Î v.incidentEdges()

if e.getLabel() = UNEXPLORED
w ¬ e.opposite(v)
if w.getLabel() = UNEXPLORED

e.setLabel(DISCOVERY)
S.push(e)
pathDFS(G, w, z)
S.pop(e)

else
e.setLabel(BACK)

S.pop(v)

36

Cycle Finding
We can specialize the DFS
algorithm to find a simple cycle
using the template method
pattern

We use a stack S to keep track of
the path between the start vertex
and the current vertex

As soon as a back edge (v, w) is
encountered, we return the cycle
as the portion of the stack from
the top to vertex w

Algorithm cycleDFS(G, v, z)
v.setLabel(VISITED)
S.push(v)
for all e Î v.incidentEdges()

if e.getLabel() = UNEXPLORED
w ¬ e.opposite(v)
S.push(e)
if w.getLabel() = UNEXPLORED

e.setLabel(DISCOVERY)
pathDFS(G, w, z)
S.pop(e)

else
T ¬ new empty stack
repeat

o ¬ S.pop()
T.push(o)

until o = w
return T.elements()

S.pop(v)

37

Breadth-First Search

CB

A

E

D

L0

L1

F
L2

38

Breadth-First Search
Breadth-first search (BFS) is
another general technique
for traversing a graph

Let’s look at the example

39

Example

CB

A

E

D

discovery edge
cross edge

A visited vertex
A unexplored vertex

unexplored edge

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

40

Example (cont.)

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

41

Example (cont.)

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

42

Breadth-First Search
A BFS traversal of a graph G
n Visits all the vertices and

edges of G
n Determines whether G is

connected
n Computes the connected

components of G
n Computes a spanning forest

of G

BFS on a graph with n vertices
and m edges takes O(n + m)
time
BFS can be further extended
to solve other graph
problems
n Find and report a path between

two given vertices
n Can label each vertex by the

length of a shortest path (in
terms of # of edges) from the
start vertex s

n Find a simple cycle, if there is
one

43

BFS Algorithm
The algorithm uses a mechanism for
setting and getting “labels” of
vertices and edges

Algorithm BFS(G, s)
L0¬ new empty sequence
L0.insertBack(s)
s.setLabel(VISITED)
i ¬ 0
while ¬Li.empty()

Li +1¬ new empty sequence
for all v Î Li.elements()

for all e Î v.incidentEdges()
if e.getLabel() = UNEXPLORED

w ¬ e.opposite(v)
if w.getLabel() = UNEXPLORED

e.setLabel(DISCOVERY)
w.setLabel(VISITED)
Li +1.insertBack(w)

else
e.setLabel(CROSS)

i ¬ i +1

Algorithm BFS(G)
Input graph G
Output labeling of the edges

and partition of the
vertices of G

for all u Î G.vertices()
u.setLabel(UNEXPLORED)

for all e Î G.edges()
e.setLabel(UNEXPLORED)

for all v Î G.vertices()
if v.getLabel() = UNEXPLORED

BFS(G, v)

44

45

Properties
Notation

Gs: connected component of s
Property 1

BFS(G, s) visits all the vertices
and edges of Gs

Property 2
The discovery edges labeled by
BFS(G, s) form a spanning tree
Ts of Gs

Property 3
For each vertex v in Li
n The path of Ts from s to v has i

edges
n Every path from s to v in Gs has

at least i edges (i.e., find a
shortest path)

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

46

Analysis
Setting/getting a vertex/edge label takes O(1) time
Each vertex is labeled twice
n once as UNEXPLORED
n once as VISITED

Each edge is labeled twice
n once as UNEXPLORED
n once as DISCOVERY or CROSS

Each vertex is inserted once into a sequence Li
Method incidentEdges is called once for each vertex
BFS runs in O(n + m) time provided the graph is represented by
the adjacency list structure
n Recall that Sv deg(v) = 2m

47

Applications
Using the template method pattern, we can specialize
the BFS traversal of a graph G to solve the following
problems in O(n + m) time
n Compute the connected components of G
n Compute a spanning forest of G
n Find a simple cycle in G, or report that G is a forest
n Given two vertices of G, find a path in G between them with

the minimum number of edges, or report that no such path
exists

48

DFS vs. BFS

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

Applications DFS BFS
Spanning forest, connected
components, paths, cycles Ö Ö

Shortest paths Ö

Biconnected components
(how?) Ö

49

Biconnected components:
- Connected
- Even after removing any

vertex the graph remains
connected

DFS vs. BFS (cont.)

Back edge (v,w)
n w is an ancestor of v in the

tree of discovery edges

Cross edge (v,w)
n w is in the same level as v

or in the next level

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

50

Questions?

