Graphs: Basics 1843 ORD **SFO** 802 1743 ယျ 1233 DFW

On-line/Off-line Social Network

Internet Connectivity

WebBlog Connections

Other Applications

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
 - Databases
 - Entity-relationship diagram

Graphs

- A graph is a pair (V, E), where
 - *V* is a set of nodes, called vertices
 - *E* is a collection of pairs of vertices, called edges
 - Vertices and edges are positions and store elements
- Example:
 - A vertex represents an airport and stores the three-letter airport code
 - An edge represents a flight route between two airports and stores the mileage of the route

Edge Types

- Directed edge
 - ordered pair of vertices (*u*,*v*)
 - first vertex *u* is the origin
 - second vertex v is the destination
 - e.g., a flight
- Undirected edge
 - unordered pair of vertices (*u*,*v*)
 - e.g., a flight route
- Directed graph
 - all the edges are directed
 - e.g., route network
- Undirected graph
 - all the edges are undirected
 - e.g., flight network

Terminology

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of a
- Edges incident on a vertex
 - a, d, and b are incident on V
- Adjacent vertices
 - U and V are adjacent
- Degree of a vertex
 - X has degree 5
- Parallel edges
 - h and i are parallel edges
- Self-loop
 - j is a self-loop

Terminology (cont.)

- sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge is preceded and followed by its endpoints
- Simple path
 - path such that all its vertices and edges are distinct
- Examples
 - P₁=(V,b,X,h,Z) is a simple path
 - P₂=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple

Terminology (cont.)

- Cycle
 - circular sequence of alternating vertices and edges
 - each edge is preceded and followed by its endpoints
- Simple cycle
 - cycle such that all its vertices and edges are distinct
- Examples
 - C₁=(V,b,X,g,Y,f,W,c,U,a,↓) is a simple cycle
 - C₂=(U,c,W,e,X,g,Y,f,W,d,V,a, ↓) is a cycle that is not simple

Subgraphs

- A subgraph S of a graph G is a graph such that
 - The vertices of S are a subset of the vertices of G
 - The edges of S are a subset of the edges of G
- A spanning subgraph of G is a subgraph that contains all the vertices of G

Connectivity

- A graph is connected if there is a path between every pair of vertices
- A connected component of a graph G is a maximal connected subgraph of G

Trees and Forests

- A (free) tree is an undirected graph T such that
 - T is connected
 - Thas no cycles

This definition of tree is different from the one of a rooted tree

A forest is an undirected graph without cycles

The connected components of a forest are trees

Spanning Trees and Forests

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest

Some Properties for Undirected Graphs

Property 1 Notation $\sum_{v} \deg(v) = 2m$ number of vertices n number of edges Proof: each edge is counted M twice deg(v)degree of vertex vProperty 2 In an undirected graph with Example no self-loops and no ■ *n* = 4 multiple edges $m \le n \ (n-1)/2$ $\bullet m = 6$ Proof: each vertex has • $\deg(v) = 3$ degree at most (n-1)What is the bound for a directed graph?

Main Methods of the Graph ADT

- Vertices and edges
 - are positions
 - store elements
- Accessor methods
 - e.endVertices(): a list of the two endvertices of e
 - e.opposite(v): the vertex opposite of v on e
 - u.isAdjacentTo(v): true iff u and v are adjacent
 - *v: reference to element associated with vertex v
 - *e: reference to element associated with edge e

- Update methods
 - insertVertex(o): insert a vertex storing element o
 - insertEdge(v, w, o): insert an edge (v,w) storing element o
 - eraseVertex(v): remove vertex v (and its incident edges)
 - eraseEdge(e): remove edge e
- Iterable collection methods
 - incidentEdges(v): list of edges incident to v
 - vertices(): list of all vertices in the graph
 - edges(): list of all edges in the graph

What is a data structure to represent a graph?

We will discuss three ways

1. Edge List Structure

- Vertex object
 - element
 - reference to position in vertex sequence
- Edge object
 - element
 - origin vertex object
 - destination vertex object
 - reference to position in edge sequence
- Vertex sequence (e.g., list)
 - sequence of vertex objects
- Edge sequence (e.g., list)
 - sequence of edge objects

Performance

 <i>n</i> vertices, <i>m</i> edges no parallel edges no self-loops 	Edge List	Adjacency List	Adjacency Matrix
Space	<i>n</i> + <i>m</i>	n + m	n ²
v.incidentEdges()	m	deg(v)	n
<pre>u.isAdjacentTo (v)</pre>	m	min(deg(v), deg(w))	1
insertVertex(<i>o</i>)	1	1	n ²
insertEdge(<i>v, w, o</i>)	1	1	1
eraseVertex(v)	m	deg(v)	n ²
eraseEdge(<i>e</i>)	1	1	1

v.incidentEdges() and u.isAdjacneTo(v)

Need to check all the edges

2. Adjacency List Structure

- Basic: Edge list structure
- Supports direct access to the incident edges from a node
 - Incidence edge sequence for each vertex
- Augmented edge objects
 - references to associated positions in incidence sequences of end vertices
- Provides direct access
 - From the edges to the vertices
 - From the vertices to their incident edges

Performance

 <i>n</i> vertices, <i>m</i> edges no parallel edges no self-loops 	Edge List	Adjacency List	Adjacency Matrix
Space	n + m	<i>n</i> + <i>m</i>	n ²
v.incidentEdges()	m	deg(v)	n
u.isAdjacentTo (v)	m	min(deg(v), deg(w))	1
insertVertex(o)	1	1	n ²
insertEdge(<i>v, w, o</i>)	1	1	1
eraseVertex(v)	m	deg(v)	n ²
eraseEdge(<i>e</i>)	1	1	1

v.incidentEdges(): direct access to incident edges

u.isAdjacentTo(v):

3. Adjacency Matrix Structure

- Edge list structure
- Augmented vertex objects
 - Integer key (index) associated with vertex
- 2D-array adjacency array
 - Reference to edge object for adjacent vertices
 - Null for non nonadjacent vertices
- The "old fashioned" version just has 0 for no edge and 1 for edge

Performance

 <i>n</i> vertices, <i>m</i> edges no parallel edges no self-loops 	Edge List	Adjacency List	Adjacency Matrix
Space	n + m	<i>n</i> + <i>m</i>	n ²
v.incidentEdges()	т	deg(v)	n
u.isAdjacentTo (v)	m	min(deg(v), deg(w))	1
insertVertex(o)	1	1	n ²
insertEdge(<i>v, w, o</i>)	1	1	1
eraseVertex(v)	m	deg(v)	n ²
eraseEdge(<i>e</i>)	1	1	1

u.isAdjacentTo(v): using v's key

Performance

 <i>n</i> vertices, <i>m</i> edges no parallel edges no self-loops 	Edge List	Adjacency List	Adjacency Matrix
Space	<i>n</i> + <i>m</i>	<i>n</i> + <i>m</i>	n ²
v.incidentEdges()	m	deg(v)	n
u.isAdjacentTo (v)	m	min(deg(v), deg(w))	1
insertVertex(<i>o</i>)	1	1	n ²
insertEdge(<i>v, w, o</i>)	1	1	1
eraseVertex(v)	m	deg(v)	n ²
eraseEdge(<i>e</i>)	1	1	1

v.incidentEdges(): direct access to incident edges

u.isAdjacentTo(v):

Depth-First Search

Depth-first search (DFS) is a general technique for traversing a graph

Let's first see the example

Example

Example (cont.)

One implication: discovery edges form a spanning tree.

Depth-First Search

A DFS traversal of a graph G

- Visits all the vertices and edges of G
- Determines whether G is connected (how?)
- Computes the connected components of G (how?)
- Computes a spanning forest of G

- DFS on a graph with *n* vertices and *m* edges takes **O**(**n** + **m**) time
- DFS can be further extended to solve other graph problems
 - Find and report a path between two given vertices
 - Find a cycle in the graph

DFS Algorithm

 The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm **DFS(G)**

Input graph G Output labeling of the edges of G as discovery edges and back edges for all $u \in G.vertices()$ u.setLabel(UNEXPLORED)for all $e \in G.edges()$ e.setLabel(UNEXPLORED)for all $v \in G.vertices()$ if v.getLabel() = UNEXPLORED

DFS(G, v)

Algorithm DFS(G, v)

Input graph *G* and a start vertex *v* of *G* Output labeling of the edges of G in the connected component of vas discovery edges and back edges v.setLabel(VISITED) for all $e \in G.incidentEdges(v)$ **if** *e.getLabel()* = *UNEXPLORED* $w \leftarrow e.opposite(v)$ if w.getLabel() = UNEXPLORED e.setLabel(DISCOVERY) DFS(G, w)else e.setLabel(BACK)

C

G

ł

Κ

(0)

(e)

B

F

J

N

A

E

(M

B

Α

C

D

H

L

P

D

(H)

L

P

(G

K

DFS and Maze Traversal

- The DFS algorithm is similar to a classic strategy for exploring a maze
 - We mark each intersection, corner and dead end (vertex) visited
 - We mark each corridor (edge) traversed
 - We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)

Properties of DFS

Property 1

DFS(G, v) visits all the
vertices and edges in the
connected component of
v

Property 2

The discovery edges labeled by **DFS**(**G**, **v**) form a spanning tree of the connected component of **v**

Analysis of DFS

- Setting/getting a vertex/edge label takes O(1) time
 - Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or BACK
- Method incidentEdges is called once for each vertex
 - Complexity of v.incidentEdges: deg(v)
- DFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$

Path Finding

- We can specialize the DFS algorithm to find a path between two given vertices u and z using the template method pattern
- We call **DFS**(G, u) with u as the start vertex
- We use a stack S to keep track of the path between the start vertex and the current vertex
 - As soon as destination vertex z is encountered, we return the path as the contents of the stack

```
Algorithm pathDFS(G, v, z)
  v.setLabel(VISITED)
  S.push(v)
  if v = z.
    return S.elements()
  for all e \in v.incidentEdges()
    if e.getLabel() = UNEXPLORED
       w \leftarrow e.opposite(v)
      if w.getLabel() = UNEXPLORED
         e.setLabel(DISCOVERY)
         S.push(e)
         pathDFS(G, w, z)
         S.pop(e)
      else
         e.setLabel(BACK)
  S.pop(v)
```

Cycle Finding

- We can specialize the DFS algorithm to find a simple cycle using the template method pattern
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as a back edge (v, w) is encountered, we return the cycle as the portion of the stack from the top to vertex w

```
Algorithm cycleDFS(G, v, z)
  v.setLabel(VISITED)
  S.push(v)
  for all e \in v.incidentEdges()
      if e.getLabel() = UNEXPLORED
         w \leftarrow e.opposite(v)
        S.push(e)
        if w.getLabel() = UNEXPLORED
            e.setLabel(DISCOVERY)
           pathDFS(G, w, z)
           S.pop(e)
        else
            T \leftarrow new empty stack
            repeat
              o \leftarrow S.pop()
              T.push(o)
            until \boldsymbol{o} = \boldsymbol{w}
           return T.elements()
  S.pop(v)
```


Breadth-First Search

 Breadth-first search (BFS) is another general technique for traversing a graph

Example

Example (cont.)

Example (cont.)

Breadth-First Search

A BFS traversal of a graph G

- Visits all the vertices and edges of G
- Determines whether G is connected
- Computes the connected components of G
- Computes a spanning forest of G

- BFS on a graph with *n* vertices
 and *m* edges takes *O*(*n* + *m*)
 time
- BFS can be further extended to solve other graph problems
 - Find and report a path between two given vertices
 - Can label each vertex by the length of a shortest path (in terms of # of edges) from the start vertex s
 - Find a simple cycle, if there is one

BFS Algorithm

The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm **BFS(G)**

Input graph GOutput labeling of the edges and partition of the vertices of Gfor all $u \in G.vertices()$ u.setLabel(UNEXPLORED)

for all $e \in G.edges()$

e.setLabel(UNEXPLORED)

<u>for all v ∈ G.vertices()</u> <u>if v.getLabel() = UNEXPLORED</u>

BFS(G, v)

```
Algorithm BFS(G, s)
  L_0 \leftarrow new empty sequence
  L_0.insertBack(s)
  s.setLabel(VISITED)
  i ← 0
  while \neg L_r empty()
     L_{i+1} \leftarrow new empty sequence
     for all v \in L_{\dot{r}} elements()
       for all e \in v.incidentEdges()
          if e.getLabel() = UNEXPLORED
             w \leftarrow e.opposite(v)
             if w.getLabel() = UNEXPLORED
                e.setLabel(DISCOVERY)
                w.setLabel(VISITED)
               L_{i+1}.insertBack(w)
             else
                e.setLabel(CROSS)
     i \leftarrow i + 1
```


Properties

Notation

*G*_s: connected component of *s* **Property 1**

BFS(G, s) visits all the vertices and edges of G_s

Property 2

The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_s

Property 3

For each vertex v in L_i

- The path of T_s from s to v has i edges
- Every path from s to v in G_s has at least *i* edges (i.e., find a shortest path)

Analysis

- Setting/getting a vertex/edge label takes O(1) time
 - Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
 - Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex
- BFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$

Applications

- Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in O(n + m) time
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in *G*, or report that *G* is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

DFS vs. BFS

Applications	DFS	BFS
Spanning forest, connected components, paths, cycles	\checkmark	\checkmark
Shortest paths		\checkmark
Biconnected components (how?)	\checkmark	

Biconnected components:

- Connected
- Even after removing any vertex the graph remains connected

DFS vs. BFS (cont.)

Back edge (v,w)

 w is an ancestor of v in the tree of discovery edges

Cross edge (v,w)

 w is in the same level as v or in the next level

Questions?