Graphs: Basics

Real Life Examples

- Internet Connectivity

- On-line/Off-line Social Network

Real Life Examples

\checkmark WebBlog Connections

Real Life Examples

- Navigator

Graphs

\diamond A graph is a pair $(\boldsymbol{V}, \boldsymbol{E})$, where

- \boldsymbol{V} is a set of nodes, called vertices
- \boldsymbol{E} is a collection of pairs of vertices, called edges
- Vertices and edges are positions and store elements
- Example:
- A vertex represents an airport and stores the three-letter airport code
- An edge represents a flight route between two airports and stores the mileage of the route

Other Applications

- Electronic circuits
- Printed circuit board
- Integrated circuit
- Transportation networks
- Highway network
- Flight network
- Computer networks
- Local area network
- Internet
- Web
- Databases
- Entity-relationship diagram

Edge Types

- Directed edge
- ordered pair of vertices ($\boldsymbol{u}, \boldsymbol{v}$)
- first vertex \boldsymbol{u} is the origin
- second vertex \boldsymbol{v} is the destination

- e.g., a flight
- Undirected edge
- unordered pair of vertices $(\boldsymbol{u}, \boldsymbol{v})$
- e.g., a flight route

- Directed graph
- all the edges are directed
- e.g., route network
- Undirected graph
- all the edges are undirected
- e.g., flight network

Terminology

- End vertices (or endpoints) of an edge
- U and V are the endpoints of a
- Edges incident on a vertex
- a, d, and b are incident on V
- Adjacent vertices
- U and V are adjacent
- Degree of a vertex
- X has degree 5
- Parallel edges
- h and i are parallel edges
- Self-loop
- j is a self-loop

Terminology (cont.)

- Cycle
- circular sequence of alternating vertices and edges
- each edge is preceded and followed by its endpoints
- Simple cycle
- cycle such that all its vertices and edges are distinct
- Examples
- $C_{1}=(V, b, X, g, Y, f, W, c, U, a,-J)$ is a simple cycle
- $\left.\mathrm{C}_{2}=(\mathrm{U}, \mathrm{c}, \mathrm{W}, \mathrm{e}, \mathrm{X}, \mathrm{g}, \mathrm{Y}, \mathrm{f}, \mathrm{W}, \mathrm{d}, \mathrm{V}, \mathrm{a}\lrcorner \mathrm{J},\right)$ is a cycle that is not simple

- Note) Tree is a graph without cycles

Terminology (cont.)

- Path
- sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge is preceded and followed by its endpoints
- Simple path
- path such that all its vertices and edges are distinct
- Examples
- $P_{1}=(V, b, X, h, Z)$ is a simple path
- $P_{2}=(U, c, W, e, X, g, Y, f, W, d, V)$ is a path that is not simple

Subgraphs

* A subgraph S of a graph G is a graph such that
- The vertices of S are a subset of the vertices of G
- The edges of S are a subset of the edges of G
* A spanning subgraph of G is a subgraph that contains all the vertices of G

Subgraph

Spanning subgraph

Connectivity

* A graph is connected if there is a path between every pair of vertices
- A connected component of a graph G is a maximal connected subgraph of G
* "Maximal"?

Connected graph

Non connected graph with two connected components

13

Trees and Forests

- A (free) tree is an undirected graph T such that
- T is connected
- Thas no cycles

This definition of tree is different from the one of a rooted tree

- A forest is an undirected graph without cycles
- The connected components of a forest are trees

Tree

Forest

Some Properties for Undirected Graphs

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest

Graph

Spanning tree

Property 1
$\Sigma_{v} \operatorname{deg}(v)=2 m$
Proof: each edge is counted twice
Property 2
In an undirected graph with no self-loops and no multiple edges

$$
\boldsymbol{m} \leq \boldsymbol{n}(\boldsymbol{n}-1) / 2
$$

Proof: each vertex has degree at most $(\boldsymbol{n}-1)$

What is the bound for a directed graph?

Notation
$\boldsymbol{n} \quad$ number of vertices
\boldsymbol{m} number of edges
$\operatorname{deg}(\boldsymbol{v})$ degree of vertex \boldsymbol{v}

Example

- $n=4$
- $\boldsymbol{m}=6$
- $\operatorname{deg}(\boldsymbol{v})=3$

Main Methods of the Graph ADT

- Vertices and edges
- are positions
- store elements
- Accessor methods
- e.endVertices(): a list of the two endvertices of e
- e.opposite(v): the vertex opposite of v on e
- u.isAdjacentTo(v): true iff u and v are adjacent
- *v: reference to element associated with vertex v
- *e: reference to element associated with edge e
- Update methods
- insertVertex(o): insert a vertex storing element o
- insertEdge($\mathrm{v}, \mathrm{w}, \mathrm{o}$): insert an edge (v, w) storing element o
- eraseVertex(v): remove vertex v (and its incident edges)
- eraseEdge(e): remove edge e
- Iterable collection methods
- incidentEdges(v): list of edges incident to v
- vertices(): list of all vertices in the graph
- edges(): list of all edges in the graph

What is a data structure to represent a graph?

We will discuss three ways

1. Edge List Structure

- Vertex object
- element
- reference to position in vertex sequence
- Edge object

- element
- origin vertex object
- destination vertex object
- reference to position in edge sequence
- Vertex sequence (e.g., list)
- sequence of vertex objects
* Edge sequence (e.g., list)

- sequence of edge objects

Performance

- \boldsymbol{n} vertices, \boldsymbol{m} edges - no parallel edges - no self-loops	Edge List	Adjacency List	Adjacency Matrix
Space	$n+m$	$n+m$	n^{2}
v.incidentEdges()	m	$\operatorname{deg}(\mathrm{v})$	n
u.isAdjacentTo (v)	m	$\min (\operatorname{deg}(v), \operatorname{deg}(w))$	1
insertVertex(o)	1	1	n^{2}
insertEdge(v, w, o)	1	1	1
eraseVertex(v)	m	$\operatorname{deg}(v)$	n^{2}
eraseEdge(e)	1	1	1

- v.incidentEdges() and u.isAdjacneTo(v)
- Need to check all the edges

2. Adjacency List Structure

- Basic: Edge list structure
- Supports direct access to the incident edges from a node
- Incidence edge sequence for each vertex
* Augmented edge objects
- references to
associated positions in incidence sequences of end vertices
- Provides direct access
- From the edges to the vertices
- From the vertices to their incident edges

21

3. Adjacency Matrix Structure

- Edge list structure
- Augmented vertex objects
- Integer key (index) associated with vertex
- 2D-array adjacency array
- Reference to edge object for adjacent vertices
- Null for non nonadjacent vertices
- The "old fashioned" version just has 0 for no edge and 1 for edge

Performance

- \boldsymbol{n} vertices, \boldsymbol{m} edges - no parallel edges - no self-loops	Edge List	Adjacency List	Adjacency Matrix
Space	$n+m$	$\boldsymbol{n}+\boldsymbol{m}$	n^{2}
\boldsymbol{v}. incidentEdges()	m	$\operatorname{deg}(\boldsymbol{v})$	n
\boldsymbol{u}. isAdjacentTo (\boldsymbol{v})	m	$\min (\operatorname{deg}(\boldsymbol{v}), \operatorname{deg}(\boldsymbol{w}))$	1
insertVertex(o)	1	1	n^{2}
insertEdge($\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{o})$	1	1	1
eraseVertex(v)	m	$\operatorname{deg}(\boldsymbol{v})$	n^{2}
eraseEdge (\boldsymbol{e})	1	1	1

v.incidentEdges(): direct access to incident edges

- u.isAdjacentTo(v):

Performance

- \boldsymbol{n} vertices, \boldsymbol{m} edges - no parallel edges - no self-loops	Edge List	Adjacency List	Adjacency Matrix
Space	$n+m$	$n+m$	\boldsymbol{n}^{2}
\boldsymbol{v}.incidentEdges()	m	$\operatorname{deg}(v)$	\boldsymbol{n}
\boldsymbol{u}. isAdjacentTo ($\boldsymbol{v})$	m	$\min (\operatorname{deg}(v), \operatorname{deg}(w))$	1
insertVertex(o)	1	1	\boldsymbol{n}^{2}
insertEdge($\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{o})$	1	1	1
eraseVertex(v)	m	$\operatorname{deg}(v)$	\boldsymbol{n}^{2}
eraseEdge(e)	1	1	1

[^0]- u.isAdjacentTo(v): using v's key

Performance

- \boldsymbol{n} vertices, \boldsymbol{m} edges - no parallel edges - no self-loops	Edge List	Adjacency List	Adjacency Matrix
Space	$n+m$	$n+m$	n^{2}
v.incidentEdges()	m	$\operatorname{deg}(\boldsymbol{v})$	n
u.isAdjacentTo (v)	m	$\min (\operatorname{deg}(\boldsymbol{v}), \operatorname{deg}(\boldsymbol{w})$)	1
insertVertex(0)	1	1	n^{2}
insertEdge(v, w, o)	1	1	1
eraseVertex(v)	m	$\operatorname{deg}(\boldsymbol{v})$	n^{2}
eraseEdge(e)	1	1	1

- v.incidentEdges(): direct access to incident edges
- u.isAdjacentTo(v):

Depth-First Search

\diamond Depth-first search (DFS) is a general technique for traversing a graph
\star Why is this traversal important?

Let's first see the example

Example

Example (cont.)

One implication: discovery edges form a spanning tree.

Depth-First Search

* A DFS traversal of a graph G
- Visits all the vertices and edges of G
- Determines whether G is connected (how?)
- Computes the connected components of G (how?)
- Computes a spanning forest of G

DFS Algorithm

- The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm $\operatorname{DFS}(G)$

Input graph G
Output labeling of the edges of \boldsymbol{G} as discovery edges and back edges
for all $u \in G . v e r t i c e s()$
u.setLabel(UNEXPLORED)
for all $e \in$ G.edges()
e.setLabel(UNEXPLORED)
for all $v \in G$. vertices()
if v getLabel ()$=$ UNEXPLORED $\operatorname{DFS}(G, v)$

Algorithm DFS(G, v)
Input graph \boldsymbol{G} and a start vertex \boldsymbol{v} of \boldsymbol{G}
Output labeling of the edges of \boldsymbol{G}
in the connected component of \boldsymbol{v}
as discovery edges and back edges v.setLabel(VISITED)
for all $e \in$ G.incidentEdges(v)
if $\operatorname{e.getLabel()}=$ UNEXPLORED
$w \leftarrow e$.opposite(ν)
if w.getLabel ()$=$ UNEXPLORED e.setLabel(DISCOVERY) $\operatorname{DFS}(G, w)$
else
e.setLabel(BACK)

(a)

(c)

(e)

DFS on a graph with n vertices and \boldsymbol{m} edges takes $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time

- DFS can be further extended to solve other graph problems
- Find and report a path between two given vertices
- Find a cycle in the graph

\diamond The DFS algorithm is similar to a classic strategy for exploring a maze
- We mark each intersection, corner and dead end (vertex) visited
- We mark each corridor (edge) traversed
- We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)

Properties of DFS

Property 1

$\operatorname{DFS}(\boldsymbol{G}, \boldsymbol{v})$ visits all the vertices and edges in the connected component of v

Property 2

The discovery edges labeled by $\boldsymbol{D F S}(\boldsymbol{G}, \boldsymbol{v})$ form a spanning tree of
 the connected component of v

Analysis of DFS

\diamond Setting/getting a vertex/edge label takes $\boldsymbol{O}(1)$ time

\downarrow Each vertex is labeled twice

- once as UNEXPLORED
- once as VISITED
\diamond Each edge is labeled twice
- once as UNEXPLORED
- once as DISCOVERY or BACK
\diamond Method incidentEdges is called once for each vertex
- Complexity of v.incidentEdges: deg(v)
\diamond DFS runs in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time provided the graph is represented by the adjacency list structure
- Recall that $\Sigma_{v} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$

Path Finding

- We can specialize the DFS algorithm to find a path between two given vertices \boldsymbol{u} and z using the template method pattern
- We call $\operatorname{DFS}(\boldsymbol{G}, \boldsymbol{u})$ with \boldsymbol{u} as the start vertex
* We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex z is encountered, we return the path as the contents of the stack

Algorithm pathDFS(G, $v, z)$ v.setLabel(VISITED)
S.push(v)
if $v=z$
return S.elements()
for all $e \in$ v.incidentEdges()
if e.getLabel ()$=$ UNEXPLORED
$w \leftarrow e . o p p o s i t e(v)$
if $w . \operatorname{getLabel}()=$ UNEXPLORED
e.setLabel(DISCOVERY)
S.push(e)
pathDFS(G, w, z)
S.pop(e)
else
e.setLabel(BACK)
S.pop(v)

Cycle Finding

- We can specialize the DFS algorithm to find a simple cycle using the template method pattern
- We use a stack \boldsymbol{S} to keep track of the path between the start vertex and the current vertex
- As soon as a back edge $(\boldsymbol{v}, \boldsymbol{w})$ is encountered, we return the cycle as the portion of the stack from the top to vertex \boldsymbol{w}

Algorithm $\operatorname{cycleDFS}(G, v, z$
v.setLabel(VISITED)
S.push(v)
for all $e \in$ vincidentEdges()
if e.getLabel($)=$ UNEXPLORED
$w \leftarrow$ e.opposite(v)
S.push(e)
if w. getLabel ()$=$ UNEXPLORED e.setLabel(DISCOVERY) pathDFS(G, w, z) S.pop(e)
else
$T \leftarrow$ new empty stack repeat
$o \leftarrow S . p o p()$
T.push(o)
until $o=w$ return T.elements()
S.pop(v)

Breadth-First Search

Breadth-First Search

- Breadth-first search (BFS) is another general technique for traversing a graph
-Let's look at the example

Example

Example (cont.)

41

Example (cont.)

Breadth-First Search

\diamond A BFS traversal of a graph G

- Visits all the vertices and edges of G
- Determines whether G is connected
- Computes the connected components of G
- Computes a spanning forest of G
\& BFS on a graph with \boldsymbol{n} vertices and \boldsymbol{m} edges takes $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
\bullet BFS can be further extended to solve other graph problems
- Find and report a path between two given vertices
- Can label each vertex by the length of a shortest path (in terms of \# of edges) from the start vertex s
- Find a simple cycle, if there is one

BFS Algorithm

- The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm $\operatorname{BFS}(G)$

Input graph G
Output labeling of the edges and partition of the vertices of \boldsymbol{G}
for all $u \in G$.vertices() u.setLabel(UNEXPLORED)
for all $e \in$ G.edges() e.setLabel(UNEXPLORED)

for all $v \in G . v e r t i c e s()$

if $\operatorname{v.getLabel()=UNEXPLORED}$

```
Algorithm \(\operatorname{BFS}(G, s)\)
    \(L_{0} \leftarrow\) new empty sequence
    \(L_{0}\) insertBack(s)
    s.setLabel(VISITED
    \(i \leftarrow 0\)
    while \(\neg L_{i}\) empty ()
        \(L_{i+1} \leftarrow\) new empty sequence
        for all \(v \in L_{\dot{r}}\) elements()
            for all \(e \in\) vincidentEdges()
            if e.getLabel ()\(=\) UNEXPLORED
            \(w \leftarrow\) e.opposite( \(v\) )
            if w.getLabel () = UNEXPLORED
                        e.setLabel(DISCOVERY)
                                w.setLabel(VISITED)
                                \(L_{i+1}\) insertBack(w)
                    else
                    e.setLabel(CROSS)
    \(i \leftarrow i+1\)
```


Analysis

- Setting/getting a vertex/edge label takes $\boldsymbol{O}(1)$ time
- Each vertex is labeled twice
- once as UNEXPLORED
- once as VISITED
- Each edge is labeled twice
- once as UNEXPLORED
- once as DISCOVERY or CROSS
\diamond Each vertex is inserted once into a sequence L_{i}
\diamond Method incidentEdges is called once for each vertex
\leqslant BFS runs in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time provided the graph is represented by the adjacency list structure
- Recall that $\sum_{v} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$

Properties

Notation
$\boldsymbol{G}_{\boldsymbol{s}}$: connected component of s Property 1
$\boldsymbol{B F S}(\boldsymbol{G}, \boldsymbol{s})$ visits all the vertices and edges of $\boldsymbol{G}_{\boldsymbol{s}}$
Property 2
The discovery edges labeled by $\boldsymbol{B F S}(\boldsymbol{G}, \boldsymbol{s})$ form a spanning tree \boldsymbol{T}_{s} of \boldsymbol{G}_{s}
Property 3
For each vertex \boldsymbol{v} in \boldsymbol{L}_{i}

- The path of T_{s} from s to v has i edges
- Every path from \boldsymbol{s} to \boldsymbol{v} in $\boldsymbol{G}_{\boldsymbol{s}}$ has at least i edges (i.e., find a shortest path)

Applications

* Using the template method pattern, we can specialize the BFS traversal of a graph \boldsymbol{G} to solve the following problems in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- Compute the connected components of \boldsymbol{G}
- Compute a spanning forest of \boldsymbol{G}
- Find a simple cycle in \boldsymbol{G}, or report that \boldsymbol{G} is a forest
- Given two vertices of \boldsymbol{G}, find a path in \boldsymbol{G} between them with the minimum number of edges, or report that no such path exists

Back edge (v,w)

- \boldsymbol{w} is an ancestor of \boldsymbol{v} in the tree of discovery edges

DFS

Cross edge ($\boldsymbol{v}, \boldsymbol{w}$)

- wis in the same level as \boldsymbol{v} or in the next level

BFS

49

Questions?

[^0]: - v.incidentEdges(): matrix row check

