

Real Life Examples

◆ On-line/Off-line Social Network

_

Real Life Examples

◆ Internet Connectivity

Real Life Examples

WebBlog Connections

Real Life Examples

Navigator

Other Applications

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
- Databases

5

Entity-relationship diagram

Graphs

- \bullet A graph is a pair (V, E), where
 - V is a set of nodes, called vertices
 - *E* is a collection of pairs of vertices, called edges
 - Vertices and edges are positions and store elements
- Example:
 - A vertex represents an airport and stores the three-letter airport code
 - An edge represents a flight route between two airports and stores the mileage of the route

Edge Types

- Directed edge
 - ordered pair of vertices (u,v)
 - first vertex u is the origin
 - second vertex v is the destination
 - e.g., a flight
- Undirected edge
 - unordered pair of vertices (u,v)
 - e.g., a flight route
- Directed graph
 - all the edges are directed
 - e.g., route network
- Undirected graph
 - all the edges are undirected
 - e.g., flight network

Terminology

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of a
- Edges incident on a vertex
 - a, d, and b are incident on V
- Adjacent vertices
 - U and V are adjacent
- Degree of a vertex
 - X has degree 5
- Parallel edges
 - h and i are parallel edges
- Self-loop
 - j is a self-loop

Terminology (cont.)

- Path
 - sequence of alternating vertices and edges
 - begins with a vertex
 - ends with a vertex
 - each edge is preceded and followed by its endpoints
- Simple path
 - path such that all its vertices and edges are distinct
- Examples
 - $P_1=(V,b,X,h,Z)$ is a simple path
 - P₂=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple

9

10

Terminology (cont.)

- Cycle
 - circular sequence of alternating vertices and edges
 - each edge is preceded and followed by its endpoints
- Simple cycle
 - cycle such that all its vertices and edges are distinct
- Examples
 - C₁=(V,b,X,g,Y,f,W,c,U,a, →) is a simple cycle
 - C₂=(U,c,W,e,X,g,Y,f,W,d,V,a,↓) is a cycle that is not simple
- Note) Tree is a graph without cycles

Subgraphs

- A subgraph S of a graph G is a graph such that
 - The vertices of S are a subset of the vertices of G
 - The edges of S are a subset of the edges of G
- A spanning subgraph of G is a subgraph that contains all the vertices of G

Subgraph

Spanning subgraph

Connectivity

- A graph is connected if there is a path between every pair of vertices
- A connected component of a graph G is a maximal connected subgraph of G
- "Maximal"?

Connected graph

Non connected graph with two connected components

13

Trees and Forests

- A (free) tree is an undirected graph T such that
 - T is connected
 - T has no cycles

This definition of tree is different from the one of a rooted tree

The connected components of a forest are trees

Tree

Forest

14

Spanning Trees and Forests

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest

Some Properties for Undirected Graphs

Property 1

 $\sum_{v} \deg(v) = 2m$

Proof: each edge is counted twice

Property 2

In an undirected graph with no self-loops and no multiple edges

 $m \le n \ (n-1)/2$

Proof: each vertex has degree at most (n-1)

What is the bound for a directed graph?

Notation

n number of vertices

m number of edges

deg(v) degree of vertex v

Example

 $\mathbf{m} = 6$

 $\bullet \deg(v) = 3$

16

 $\blacksquare \deg(v) = 3$

Main Methods of the Graph ADT

- Vertices and edges
 - are positions
 - store elements
- Accessor methods
 - e.endVertices(): a list of the two endvertices of e
 - e.opposite(v): the vertex opposite of v on e
 - u.isAdjacentTo(v): true iff u and v are adjacent
 - *v: reference to element associated with vertex v
 - *e: reference to element associated with edge e

- Update methods
 - insertVertex(o): insert a vertex storing element o
 - insertEdge(v, w, o): insert an edge (v,w) storing element o
 - eraseVertex(v): remove vertex v (and its incident edges)
 - eraseEdge(e): remove edge e
- Iterable collection methods
 - incidentEdges(v): list of edges incident to v
 - vertices(): list of all vertices in the graph
 - edges(): list of all edges in the graph

What is a data structure to represent a graph?

We will discuss three ways

17

1. Edge List Structure

- Vertex object
 - element
 - reference to position in vertex sequence
- Edge object
 - element
 - origin vertex object
 - destination vertex object
 - reference to position in edge sequence
- Vertex sequence (e.g., list)
 - sequence of vertex objects
- Edge sequence (e.g., list)
 - sequence of edge objects

l u	V	W	Z
• • • a	P P B	, c	n d

Performance

 n vertices, m edges no parallel edges no self-loops 	Edge List	Adjacency List	Adjacency Matrix
Space	n + m	n + m	n ²
v.incidentEdges()	m	$\deg(u)$	n
u.isAdjacentTo (v)	m	min(deg(v), deg(w))	1
insertVertex(o)	1	1	n^2
insertEdge(v, w, o)	1	1	1
eraseVertex(v)	m	$\deg(v)$	n^2
eraseEdge(<i>e</i>)	1	1	1

- v.incidentEdges() and u.isAdjacneTo(v)
 - Need to check all the edges

2. Adjacency List Structure

- ◆ Basic: Edge list structure
- Supports direct access to the incident edges from a node
 - Incidence edge sequence for each vertex
- Augmented edge objects
 - references to associated positions in incidence sequences of end vertices
- Provides direct access
 - From the edges to the vertices
 - From the vertices to their incident edges

21

Performance

 n vertices, m edges no parallel edges no self-loops 	Edge List	Adjacency List	Adjacency Matrix
Space	n + m	n + m	n^2
v.incidentEdges()	m	deg(v)	n
u. isAdjacentTo (v)	m	$min(deg(\mathbf{v}), deg(\mathbf{w}))$	1
insertVertex(o)	1	1	n^2
insertEdge(v, w, o)	1	1	1
eraseVertex(v)	m	deg($ u$)	n^2
eraseEdge(<i>e</i>)	1	1	1

- v.incidentEdges(): direct access to incident edges
- u.isAdjacentTo(v):

22

3. Adjacency Matrix Structure

- Edge list structure
- Augmented vertex objects
 - Integer key (index) associated with vertex
- 2D-array adjacency array
 - Reference to edge object for adjacent vertices
 - Null for non nonadjacent vertices
- The "old fashioned" version just has 0 for no edge and 1 for edge

Performance

 n vertices, m edges no parallel edges no self-loops 	Edge List	Adjacency List	Adjacency Matrix
Space	n + m	n + m	n ²
v.incidentEdges()	m	$\deg(v)$	n
u.isAdjacentTo (v)	m	$\min(\deg(v), \deg(w))$	1
insertVertex(o)	1	1	n ²
insertEdge(v, w, o)	1	1	1
eraseVertex(v)	m	$\deg(v)$	n ²
eraseEdge(<i>e</i>)	1	1	1

v.incidentEdges(): matrix row check

u.isAdjacentTo(v): using v's key

Performance

 n vertices, m edges no parallel edges no self-loops 	Edge List	Adjacency List	Adjacency Matrix
Space	n + m	n + m	n ²
v.incidentEdges()	m	deg(v)	n
u.isAdjacentTo (v)	m	$min(deg(\mathbf{v}), deg(\mathbf{w}))$	1
insertVertex(o)	1	1	n ²
insertEdge(v, w, o)	1	1	1
eraseVertex(v)	m	deg(v)	n ²
eraseEdge(<i>e</i>)	1	1	1

- v.incidentEdges(): direct access to incident edges
- u.isAdjacentTo(v):

25

Depth-First Search

- Depth-first search (DFS) is a general technique for traversing a graph
- Why is this traversal important?
- Let's first see the example

Example

Example (cont.)

One implication: discovery edges form a spanning tree.

DFS Algorithm

The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm **DFS**(G)

Input graph G

Output labeling of the edges of *G* as discovery edges and back edges

for all $u \in G.vertices()$

u.setLabel(UNEXPLORED)

 $\textbf{for all} \ \ e \in \textit{G.edges}()$

e.setLabel(UNEXPLORED)

for all $v \in G.vertices()$

<u>if</u> v.getLabel() = UNEXPLORED

DFS(G, v)

Algorithm DFS(G, v)

Input graph G and a start vertex v of G

29

Output labeling of the edges of *G* in the connected component of *ν* as discovery edges and back edges

v.setLabel(VISITED)

for all $e \in G.incidentEdges(v)$

 $\quad \textbf{if} \ \textit{e.getLabel}() = \textit{UNEXPLORED}$

 $w \leftarrow e.opposite(v)$

if w.getLabel() = UNEXPLORED
 e.setLabel(DISCOVERY)

DFS(G, w)

else

e.setLabel(BACK)

Depth-First Search

- A DFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected (how?)
 - Computes the connected components of G (how?)
 - Computes a spanning forest of G
- DFS on a graph with n vertices and m edges takes O(n + m) time
- DFS can be further extended to solve other graph problems
 - Find and report a path between two given vertices

30

32

• Find a cycle in the graph

DFS and Maze Traversal

- The DFS algorithm is similar to a classic strategy for exploring a maze
 - We mark each intersection, corner and dead end (vertex) visited
 - We mark each corridor (edge) traversed
 - We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)

Properties of DFS

Property 1

DFS(G, v) visits all the vertices and edges in the connected component of v

Property 2

The discovery edges labeled by DFS(G, v) form a spanning tree of the connected component of v

33

35

34

36

Analysis of DFS

- Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or BACK
- Method incidentEdges is called once for each vertex
 - Complexity of v.incidentEdges: deg(v)
- \bullet DFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$

Path Finding

- We can specialize the DFS algorithm to find a path between two given vertices u and z using the template method pattern
- We call DFS(G, u) with u as the start vertex
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex z is encountered, we return the path as the contents of the stack


```
Algorithm pathDFS(G, v, z)
  v.setLabel(VISITED)
  S.push(v)
  if v = z
    return S.elements()
  for all e \in v.incidentEdges()
    if e.getLabel() = UNEXPLORED
      w \leftarrow e.opposite(v)
      if w.getLabel() = UNEXPLORED
         e.setLabel(DISCOVERY)
         S.push(e)
        pathDFS(G, w, z)
         S.pop(e)
      else
          e.setLabel(BACK)
  S.pop(v)
```

Cycle Finding

- We can specialize the DFS algorithm to find a simple cycle using the template method pattern
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as a back edge (v, w) is encountered, we return the cycle as the portion of the stack from the top to vertex w

```
Algorithm cycleDFS(G, v, z)
  v.setLabel(VISITED)
  S.push(v)
  for all e \in v.incidentEdges()
     if \ \textit{e.getLabel}() = \textit{UNEXPLORED}
        w \leftarrow e.opposite(v)
        S.push(e)
        if w.getLabel() = UNEXPLORED
           e.setLabel(DISCOVERY)
          pathDFS(G, w, z)
          S.pop(e)
        else
           T \leftarrow new empty stack
           repeat
              o \leftarrow S.pop()
              T.push(o)
           until o = w
           return T.elements()
  S.pop(v)
```


Breadth-First Search

- Breadth-first search (BFS) is another general technique for traversing a graph
- Let's look at the example

Example

37

39

Example (cont.)

Example (cont.)

Breadth-First Search

- A BFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G
- lacktriangle BFS on a graph with n vertices and m edges takes O(n + m) time
- BFS can be further extended to solve other graph problems
 - Find and report a path between two given vertices
 - Can label each vertex by the length of a shortest path (in terms of # of edges) from the start vertex s
 - Find a simple cycle, if there is one

BFS Algorithm

 The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

```
Algorithm BFS(G)
Input graph G
Output labeling of the edges and partition of the vertices of G
for all u \in G.vertices()
u.setLabel(UNEXPLORED)
for all e \in G.edges()
e.setLabel(UNEXPLORED)
for all v \in G.vertices()
if v.getLabel() = UNEXPLORED
u.setLabel() = UNEXPLORED
```

```
Algorithm BFS(G, s)
  L_0 \leftarrow new empty sequence
  L_0.insertBack(s)
  s.setLabel(VISITED)
  i \leftarrow 0
  while \neg L_i \cdot empty()
     L_{i+1} \leftarrow new empty sequence
     for all v \in L_r elements()
        for all e \in v.incidentEdges()
          if e.getLabel() = UNEXPLORED
             w \leftarrow e.opposite(v)
             if w.getLabel() = UNEXPLORED
               e.setLabel(DISCOVERY)
               w.setLabel(VISITED)
               L_{i+1}.insertBack(w)
             else
               e.setLabel(CROSS)
     i \leftarrow i + 1
```

42

Properties

Notation

 G_s : connected component of s

Property 1

BFS(G, s) visits all the vertices and edges of G_s

Property 2

The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_s

Property 3

For each vertex v in L_i

- The path of T_s from s to v has i edges
- Every path from s to v in G_s has at least i edges (i.e., find a shortest path)

10

Analysis

- ◆ Setting/getting a vertex/edge label takes *O*(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- \bullet Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex
- \bullet BFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$

Applications

- Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in O(n + m) time
 - Compute the connected components of G
 - Compute a spanning forest of *G*
 - Find a simple cycle in **G**, or report that **G** is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

Applications	DFS	BFS
Spanning forest, connected components, paths, cycles	1	4
Shortest paths		√
Biconnected components (how?)	√	

Biconnected components:

- Connected
- Even after removing any vertex the graph remains connected

DFS vs. BFS (cont.)

Back edge (v, w)

• w is an ancestor of v in the tree of discovery edges

Cross edge (v,w)

w is in the same level as v or in the next level

49

50

Questions?