Real Life Examples

@ On-line/Off-line Social Network

Graphs: Basics

Real Life Examples Real Life Examples

@ Internet Connectivity 4 WebBlog Connections

M, ©
2 g D o8
a e 27
bfm =Rl =X
A S L= 8=
PN ™
=13 8 o e O
T M
LI - iaglh -
B g e u-T
_ . Y = @ o e gl
o [(xS @@ ®
= %&) ML) -
< B S .
2 @ S 5]
< a D,
g &
TouchGraph

Real Life Examples

@ Navigator

© G = il 3% W2% 329

LLLLL

oML 120m 4 550m
I}t LijH|QIL|ct & #==omcingan

@ ‘
=
e@ 7/

0

330/ 934
27%09:46 736m

A £2 4B CHE 4 oL NsHAY

Ol

Graphs

@ Agraphis a pair (V, E), where

s Vs a set of nodes, called vertices

s Eis a collection of pairs of vertices, called edges

= Vertices and edges are positions and store elements
@ Example:

= Avertex represents an airport and stores the three-letter airport code
= An edge represents a flight route between two airports and stores the mileage of

the route

Other Applications

@ Electronic circuits
m Printed circuit board
m Integrated circuit

@ Transportation networks
= Highway network
m Flight network

@ Computer networks
m Local area network
m [nternet
= Web

@ Databases
m Entity-relationship diagram

Edge Types

@ Directed edge
m ordered pair of vertices (u,v)
n first vertex u is the origin

= second vertex vis the
destination

= e.g,aflight
@ Undirected edge
= unordered pair of vertices (u,v)
= e.g, aflight route
@ Directed graph
= all the edges are directed
= e.g., route network
@ Undirected graph
= all the edges are undirected
n e.g, flight network

-l

cs.brown.edu

brown.edu
[o] [oa]

°°°°°° qwest.net

oooooo

Terminology

@ End vertices (or endpoints) of an
edge

m UandV are the endpoints of a
Edges incident on a vertex

m a,d,andb areincidentonV
Adjacent vertices

» UandV are adjacent
Degree of a vertex

= X has degree 5
Parallel edges

= handiare parallel edges
Self-loop

= jisaself-loop

® & & & o

Terminology (cont.)

@ Cycle

m circular sequence of alternating
vertices and edges

= each edge is preceded and
followed by its endpoints
@ Simple cycle
= cycle such that all its vertices and
edges are distinct
@ Examples
s C=(V,b,X,gY,f,W,cU,a,J)isa
simple cycle
s C,=(U,c,W,eXzg,Y,f,w,dV,a,J)is
a cycle that is not simple

@ Note) Tree is a graph without
cycles

11

Terminology (cont.)

4 Path

= sequence of alternating vertices
and edges

= begins with a vertex
= ends with a vertex

= each edge is preceded and
followed by its endpoints

@ Simple path
= path such that all its vertices and
edges are distinct

@ Examples
= P,=(V,b,X,h,Z) is a simple path

= P,=(U,c,W,eXg,Y,fwW,dV)isa
path that is not simple

Subgraphs

@ Asubgraph S of a graph G is
a graph such that

m The vertices of S are a subset
of the vertices of G

m The edges of S are a subset of
the edges of G

@ A spanning subgraph of G is
a subgraph that contains all
the vertices of G

Subgraph

Spanning subgraph

10

12

Connectivity

@ A graph is connected if
there is a path between
every pair of vertices

@ A connected component
of a graph G is a maximal
connected subgraph of G

Connected graph

@ “Maximal”?

Trees and Forests

@ A (free) treeis an
undirected graph T such
that

m Tis connected
= T has no cycles

This definition of tree is
different from the one of a Tree
rooted tree

@ A forest is an undirected

o—-=o0O

graph without cycles

@ The connected components

Non connected graph with two

connected components

Spanning Trees and Forests

@ A spanning tree of a connected
graph is a spanning subgraph that
is atree

@ A spanning tree is not unique
unless the graph is a tree

@ Spanning trees have applications Graph
to the design of communication
networks

@ A spanning forest of a graphis a
spanning subgraph that is a forest

Spanning tree

13

15

of a forest are trees Forest

Some Properties for Undirected Graphs

Property 1 Notation
ZV deg(v) =2m n number of vertices
Proof: each edge is counted m number of edges
twice deg(v) degree of vertexv
Property 2
In an undirected graph with Examp|e
no self-loops and no
multiple edges = n=4
m<nn-1)2 s m=6
Proof: each vertex has . deg(v) _3

degree at most (n — 1)

What is the bound for a
directed graph?

14

16

Main Methods of the Graph ADT

@ Vertices and edges
m are positions
= store elements
@ Accessor methods

= e.endVertices(): a list of the two
endvertices of e

= e.opposite(v): the vertex

@ Update methods

insertVertex(o): insert a vertex
storing element o

insertEdge(v, w, 0): insert an edge
(v,w) storing element o

eraseVertex(v): remove vertex v
(and its incident edges)

eraseEdge(e): remove edge e

opposite of von e @ Iterable collection methods

= u.isAdjacentTo(v): true iff uand v
are adjacent

m *v:reference to element
associated with vertex v

» *e:reference to element
associated with edge e

1. Edge List Structure

@ Vertex object
= element

= reference to position in vertex
sequence

@ Edge object

incidentEdges(v): list of edges
incidenttov

vertices(): list of all vertices in the
graph

edges(): list of all edges in the
graph

17

» element

= origin vertex object
= destination vertex object

= reference to positioninedge [Ty] [{Tv] []w] [4]z]
sequence W&\
@ Vertex sequence (e.g., list)
4qal <o) [sPEle] 3[4]d]

= sequence of vertex objects

@ Edge sequence (e.g., list)
= sequence of edge objects

19

What is a data structure to represent a graph?

We will discuss three ways

18
Performance
® n vertices, m edges Edge
® no parallel edges .
List
" no self-loops
Space n+m
v.incidentEdges() m
u.isAdjacentTo (v) m
insertVertex(o) 1
insertEdge(v, w, o) 1
eraseVertex(v) m
eraseEdge(e) 1
@ v.incidentEdges() and u.isAdjacneTo(v)
= Need to check all the edges
20

2. Adjacency List Structure

@ Basic: Edge list structure

@ Supports direct access to
the incident edges from a
node

= Incidence edge O
sequence for each

vertex
[1]4

[
d
o
<
ad
o—
=

?
@ Augmented edge objects l

= references to
associated positions in
incidence sequences of
end vertices

@ Provides direct access \

» From the edges to the
vertices
m From the vertices to
their incident edges 21

|
¢
’

e | o
Lo

Lo | e~

3. Adjacency Matrix Structure

@ Edge list structure

@ Augmented vertex
objects
= Integer key (index)
associated with
vertex

¢ 20y sdcency O[] A0 20Ty
= Reference to edge

object for adjacent
vertices

0
(%)

= Null for non
nonadjacent vertices /1\\'
1%}

@ The “old fashioned”
version just has O for

no edge and 1 for edge

/.
Q
| —o

23

Performance

® n vertices, m edges

® no parallel edges Adja_cency
List

= no self-loops

Space n+m

v.incidentEdges() deg(v)

u.isAdjacentTo (v)

min(deg(v), deg(w))

insertVertex(o) 1
insertEdge(v, w, o) 1
eraseVertex(v) deg(v)
eraseEdge(e) 1

@ v.incidentEdges(): direct access to incident edges

@ u.isAdjacentTo(v):

22
Performance
® n vertices, m edges Adjacency
® no parallel edges .

Matrix

" no self-loops
Space n?
v.incidentEdges() n
u.isAdjacentTo (v) 1
insertVertex(o) n?
insertEdge(v, w, 0) 1
eraseVertex(v) n?
eraseEdge(e) 1
@ v.incidentEdges(): matrix row check
@ u.isAdjacentTo(v): using v's key

24

Performance

:::Z:::ﬁ; ': d?iies Ecllge AdjaFency Adjace.ncy
* 1o self-loops List List Matrix
Space n+m n+m n?
v.incidentEdges() m deg(v) n
u.isAdjacentTo (v) m min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n?
insertEdge(v, w, 0) 1 1 1
eraseVertex(v) m deg(v) n?
eraseEdge(e) 1 1 1

@ v.incidentEdges(): direct access to incident edges

@ u.isAdjacentTo(v):

Depth-First Search

25

@ Depth-first search (DFS) is a general technique for traversing a

graph

@ Why is this traversal important?

@ Let’s first see the example

27

Depth-First Search

Example

unexplored vertex
visited vertex
unexplored edge
discovery edge
back edge

26

28

Example (cont.) Depth-First Search

@ A DFS traversal of a graph G

= Visits all the vertices and
edges of G

m Determines whether G is
connected (how?)

= Computes the connected
components of G (how?)

= Computes a spanning forest
of G

One implication: discovery edges form a spanning tree. 29

DFS Algorithm

@ The algorithm uses a mechanism for
setting and getting “labels” of
vertices and edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Algorithm DFS(G) Output labeling of the edges of G
Input graph G in the connected component of v
Output labeling of the edges of G as discovery edges and back edges
as discovery edges and v.setLabel(VISITED)
back edges for all e € G.incidentEdges(v)
for all u € G.vertices() if e.getLabel() = UNEXPLORED
u.setLabelUNEXPLORED) w <« e.opposite(v)
for all e € G.edges() if w.getLabel() = UNEXPLORED
e.setLabelUNEXPLORED) e.setLabel(DISCOVERY)
for all v € G.vertices() DFS(G, w)
if v.getLabel() = UNEXPLORED else
DFS(G, v) e.setLabel(BACK)

31

4 DFS on a graph with n
vertices and m edges takes
O(n +m)time

@ DFS can be further extended
to solve other graph
problems

m Find and report a path between
two given vertices

m Find a cycle in the graph

30

‘. N e
0 . .
' N] 2 1
i S i
(L

G
,
g

() 32

DFS and Maze Traversal

@ The DFS algorithm is similar
to a classic strategy for
exploring a maze

= We mark each intersection,
corner and dead end (vertex)
visited

= We mark each corridor (edge)
traversed

m We keep track of the path
back to the entrance (start
vertex) by means of a rope
(recursion stack)

Analysis of DFS

@ Setting/getting a vertex/edge label takes O(1) time

@ Each vertex is labeled twice
m once as UNEXPLORED
m once as VISITED

@ Each edge is labeled twice
= once as UNEXPLORED
m once as DISCOVERY or BACK

@ Method incidentEdges is called once for each vertex

m Complexity of v.incidentEdges: deg(v)

@ DFS runs in O(n + m) time provided the graph is represented by

the adjacency list structure
= Recall that 2, deg(v) =2m

33

35

Properties of DFS

Property 1

DFS(G, v) visits all the
vertices and edges in the
connected component of
v

Property 2

The discovery edges
labeled by DFS(G, v)
form a spanning tree of
the connected component
of v

Path Finding

@ We can specialize the DFS
algorithm to find a path between
two given vertices u and z using
the template method pattern

@ We call DFS(G, u) with u as the
start vertex

@ We use a stack S to keep track of
the path between the start vertex
and the current vertex

@ As soon as destination vertex z is
encountered, we return the path
as the contents of the stack

Algorithm pathDFS(G, v, z)
v.setLabel(VISITED)
S.push(v)
if v=z
return S.elements()
for all e € v.incidentEdges()
if e.getLabel()= UNEXPLORED
w < e.opposite(v)
if w.getLabel() = UNEXPLORED
e.setLabel(DISCOVERY)
S.push(e)
pathDFS(G, w,)
S.pop(e)
else
e.setLabel(BACK)

S.pop(v)

34

36

Cycle Finding

@ We can specialize the DFS
algorithm to find a simple cycle
using the template method
pattern

@ We use a stack S to keep track of
the path between the start vertex
and the current vertex

@ Assoon as a back edge (v, w) is
encountered, we return the cycle
as the portion of the stack from

the top to vertex w

Breadth-First Search

@ Breadth-first search (BFS) is
another general technique
for traversing a graph

@ Let’s look at the example

Algorithm cycleDFS(G, v, z)
v.setLabel(VISITED)
S.push(v)
for all e € v.incidentEdges()
if e.getLabel() = UNEXPLORED
w <« e.opposite(v)
S.push(e)
if w.getLabel() = UNEXPLORED
e.setLabel(DISCOVERY)
pathDFS(G, w, 7)
S.pop(e)
else
T < new empty stack
repeat
0 < S.pop()
T.push(o)
until o =w
return T.elements()
S.pop(»)

37

39

Breadth-First Search

38

Example

(® unexplored vertex
@ visited vertex
unexplored edge
— discovery edge
- = =» cross edge

40

Example (cont.)

Breadth-First Search

@ A BFS traversal of a graph G

= Visits all the vertices and
edges of G

= Determines whether G is
connected

s Computes the connected
components of G

s Computes a spanning forest
of G

41

@ BFS on a graph with n vertices
and m edges takes O(n + m)
time

@ BFS can be further extended
to solve other graph
problems

m Find and report a path between
two given vertices

m Can label each vertex by the
length of a shortest path (in
terms of # of edges) from the
start vertex s

m Find a simple cycle, if there is
one

43

Example (cont.)

BFS Algorithm

@

The algorithm uses a mechanism for
setting and getting “labels” of
vertices and edges

42

Algorithm BFS(G)
Input graph G
Output labeling of the edges

and partition of the
vertices of G

for all u € G.vertices()
u.setLabel(UNEXPLORED)

for all ¢ € G.edges()
e.setLabel(UNEXPLORED)

for all v € G.vertices()
if v.getLabel() = UNEXPLORED

BFS(G, v)

Algorithm BFS(G, s)
Ly < new empty sequence
Ly.insertBack(s)
s.setLabel(VISITED)
i« 0
while —L.empty()
L; ., < new empty sequence
for all v € L.elements()
for all e € v.incidentEdges()
if e.getLabel() = UNEXPLORED
w < e.opposite(v)
if w.getLabel() = UNEXPLORED
e.setLabel(DISCOVERY)
w.setLabel(VISITED)
L; . .insertBack(w)
else
e.setLabel(CROSS)
i<i+l

44

Properties

Notation
G, connected component of s Q
Property 1
BFS(G, s) visits all the vertices
and edges of G
Property 2
The discovery edges labeled by
BFS(G, s) form a spanning tree
T, of G|
Property 3
For each vertex vin L;

m The path of T fromstovhasi
edges

» Every path from s tovin G has
at least i edges (i.e., find a
shortest path)

45 46

Analysis Applications

@ Setting/getting a vertex/edge label takes O(1) time @ Using the template method pattern, we can specialize
@ Each vertex s labeled twice the BFS traversal of a graph G to solve the following
m once as UNEXPLORED . .
problems in O(n + m) time

m once as VISITED
@ Each edge is labeled twice Compute the connected components of G

= once as UNEXPLORED
m once as DISCOVERY or CROSS

® Each vertex is inserted once into a sequence L; Given two vertices of G, find a path in G between them with

@ Method incidentEdges is called once for each vertex the minimum number of edges, or report that no such path
@ BFS runs in O(n + m) time provided the graph is represented by exists
the adjacency list structure

Compute a spanning forest of G

Find a simple cycle in G, or report that G is a forest

= Recall that 2, deg(v) = 2m

47 48

DFS vs. BFS DFS vs. BFS (cont.)

Applications DFS | BFS Biconnected components: ked q

Spanning forest, connected J J - Connected ‘ Back edge (v,w) Cross edge (v,w)

components, paths, cycles - Even after removing any = wis an ancestor of v in the m wisinthe same level asv
vertex the graph remains tree of discovery edges or in the next level

Shortest paths v connected

Biconnected components J

(how?)

49

Questions?

