I

Graphs: Basics

V4

Real Life Examples
@ On-line/Off-line Social Network

-

g B 0 E

~ssrara

Real Life Examples

@ Internet Connectivity

1 ANS

1 ATT
BBNIGTE

1 CERFnet

Real Life Examples

@ WebBlog Connections

TouchGraph

Real Life Examples

@ Navigator

Ozl B25320 SkKT@E ¥ 9 © 0O
ot ks

=9|2AH,2

120m 550m

OHISIA| L. ! —
17 LHH|QIL|C} Z2E o|erstof XHEHY hLiCh

AN =2 S4B CHS = oL MK et
NE Y78 E4:010] 2TSHAI7| BRELICE

Other Applications

@ Electronic circuits cslabla cslabib
m Printed circuit board

m Integrated circuit

@ Transportation networks
m Highway network

oooooo

m Flight network
& Computer networks =z

m Local area network
m Internet
s Web

& Databases

oooooo

m Entity-relationship diagram Paul Bavi

oooooo

gwest.net

Graphs

@ Agraphis a pair (V, E), where

s Vs a set of nodes, called vertices

m FEis a collection of pairs of vertices, called edges
m Vertices and edges are positions and store elements

@ Example:

m A vertex represents an airport and stores the three-letter airport code

m An edge represents a flight route between two airports and stores the mileage of

the route

Edge Types

@ Directed edge
m ordered pair of vertices (u,v)
n first vertex u is the origin

= second vertex vis the
destination

m e.g.,aflight
@ Undirected edge
= unordered pair of vertices (u,v)
m e.g., aflight route
@ Directed graph
m all the edges are directed
= e.g., route network
@ Undirected graph
» all the edges are undirected
n e.g, flight network

light
@A 1206

ORD

miles

PVD

PVD

Terminology

84

® @ & ¢ o

End vertices (or endpoints) of an
edge

s UandV are the endpoints of a
Edges incident on a vertex

m a,d,and bareincidentonV
Adjacent vertices

s UandV are adjacent
Degree of a vertex

m X has degree 5
Parallel edges

m handiare parallel edges
Self-loop

m jisaself-loop

Terminology (cont.)

&

Path

= sequence of alternating vertices
and edges

= begins with a vertex
m ends with a vertex

m each edge is preceded and
followed by its endpoints

@ Simple path

m path such that all its vertices and
edges are distinct

@ Examples

s P,;=(V,b,X,h,Z) is a simple path

= P2=(UICIWIeIXIgIYIfIWIdIV) is a
path that is not simple

10

Terminology (cont.)

@ Cycle

m circular sequence of alternating
vertices and edges

m each edge is preceded and
followed by its endpoints

@ Simple cycle

m cycle such that all its vertices and
edges are distinct

@ Examples
n C=(V,b,X,gY,f,W,cU,a,d)isa
simple cycle
n C,=(U,c,W,eX,gY,fW,d,V,a,J)is
a cycle that is not simple

@ Note) Tree is a graph without
cycles

Subgraphs

@ A subgraph Sofagraph Gis
a graph such that

m The vertices of S are a subset
of the vertices of G

m The edges of S are a subset of
the edges of G

@ A spanning subgraph of G is
a subgraph that contains all
the vertices of G

Spanning subgraph

11

12

Connectivity

@ A graph is connected if
there is a path between
every pair of vertices

@ A connected component
of a graph G is a maximal
connected subgraph of G

@ “Maximal”’?

Trees and Forests

@ A (free) tree is an
undirected graph T such
that

m Tis connected
m T has no cycles

This definition of tree is
different from the one of a
rooted tree

@ A forestis an undirected
graph without cycles

@ The connected components
of a forest are trees

Connected graph

[o

Non connected graph with two
connected components

O0—0—0
o

Tree

i S

Forest

13

14

Spanning Trees and Forests

@ A spanning tree of a connected
graph is a spanning subgraph that
is a tree

@ A spanning tree is not unique
unless the graph is a tree

@ Spanning trees have applications
to the design of communication
networks

@ A spanning forest of a graph is a
spanning subgraph that is a forest

Graph

Spanning tree

15

Some Properties for Undirected Graphs

Property 1

Ev deg(v) =2m
Proof: each edge is counted
twice
Property 2

In an undirected graph with
no self-loops and no
multiple edges

m<n(n-1)/2
Proof: each vertex has
degree at most (n — 1)

What is the bound for a
directed graph?

Notation
n number of vertices
m number of edges

deg(v) degree of vertex v

Example

mn=4

mm=06
m deg(v)=3

16

Main Methods of the Graph ADT

@ Vertices and edges

m are positions
m store elements

@ Accessor methods

s e.endVertices(): a list of the two
endvertices of e

= e.opposite(v): the vertex
opposite of von e

m Uu.isAdjacentTo(v): true iff uand v
are adjacent

m *v: reference to element
associated with vertex v

s *e:reference to element
associated with edge e

@ Update methods

= insertVertex(o): insert a vertex
storing element o

» insertEdge(v, w, 0): insert an edge
(v,w) storing element o

= eraseVertex(v): remove vertex v
(and its incident edges)

m eraseEdge(e): remove edge e
@ Iterable collection methods
m incidentEdges(v): list of edges

incidenttov

m vertices(): list of all vertices in the
graph

m edges(): list of all edges in the
graph

17

What is a data structure to represent a graph?

We will discuss three ways

18

1. Edge List Structure

@ Vertex object
» element

m reference to position in vertex
sequence

@ Edge object
= element
m origin vertex object
m destination vertex object
m reference to position in edge J|

u
sequence / ?\ T
@ Vertex sequence (e.g., list) 1

=
N

J|d b ofd
m sequence of vertex objects A d ‘\(ZZ b \/JZ € A d
@ Edge sequence (e.g., list) g), &) \Gé
m sequence of edge objects
19

Performance
® n vertices, m edges Edge
® no parallel edges .
List
® no self-loops
Space n+m
v.incidentEdges() m
u.isAdjacentTo (v) m
insertVertex(o) 1
insertEdge(v, w, o) 1
eraseVertex(v) m
erasekdge(e) 1

@ v.incidentEdges() and u.isAdjacneTo(v)
m Need to check all the edges

20

2. Adjacency List Structure

@ Basic: Edge list structure

a b
@ Supports direct access to C@/GD\@

the incident edges from a

node

= Incidence edge ®
sequence for each fi
vertex] i
! u ? v
@ Augmented edge objects
n references to
associated positions in
incidence sequences of
end vertices ar
@ Provides direct access Wnok
m From the edges to the
vertices
m From the vertices to
their incident edges
Performance
® n vertices, m edges .
Adjacency
® no parallel edges .
List
® no self-loops
Space n+m
v.incidentEdges() deg(v)
u.isAdjacentTo (v) min(deg(v), deg(w))
insertVertex(o) 1
insertEdge(v, w, o) 1
eraseVertex(v) deg(v)
erasekdge(e) 1

@ v.incidentEdges(): direct access to incident edges
@ u.isAdjacentTo(v):

3. Adjacency Matrix Structure

@ Edge list structure

@ Augmented vertex
objects
= Integer key (index)
associated with
vertex
@ 2D-array adjacency
array
m Reference to edge

object for adjacent
vertices

= Null for non
nonadjacent vertices

@ The “old fashioned”
version just has O for
no edge and 1 for edge

R

R

1 ¢|w
0\1 2
0 |o|* |2
/1T (o | A
al2 |@ %) \\‘/b

23
Performance
® n vertices, m edges Adjacency
" no parallel edges Matrix
® no self-loops
Space n:
v.incidentEdges() n
u.isAdjacentTo (v) 1
insertVertex(o) n’
insertEdge(v, w, o) -
eraseVertex(v) n’
eraseEdge(e) 1

@ v.incidentEdges(): matrix row check
@ u.isAdjacentTo(v): using V's key

24

Performance

® n vertices, m edges

e no parallel edges Eo.lge Adjaf:ency Adjacepcy
“ 10 self-loops List List Matrix
Space n+m n+m n?
v.incidentEdges() m deg(v) n
u.isAdjacentTo (v) m min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n?
insertEdge(v, w, 0) 1 1 1
eraseVertex(v) m deg(v) n?
eraseEdge(e) 1 1 1
@ v.incidentEdges(): direct access to incident edges
@ u.isAdjacentTo(v):

25

Depth-First Search

V4

26

Depth-First Search

@ Depth-first search (DFS) is a general technique for traversing a
graph

@ Why is this traversal important?

@ Let’s first see the example

27

Example

@ unexplored vertex

@ visited vertex
— unexplored edge
— discovery edge

- — —» back edge /

28

Example (cont.)

One implication: discovery edges form a spanning tree. 29

Depth-First Search

@ A DFS traversal of agraph G~ 4 DFS on a graph with n
= Visits all the vertices and vertices and m edges takes

edges of G O(n +m)time
m Determines whether G is
connected (how?)

@ DFS can be further extended

m Computes the connected

components of G (how?) to solve other graph
= Computes a spanning forest problems
of G m Find and report a path between

two given vertices
m Find a cycle in the graph

30

DFS Algorithm

@ The algorithm uses a mechanism for
setting and getting “labels” of
vertices and edges

Algorithm DFS(G)
Input graph G
Output labeling of the edges of &

as discovery edges and
back edges

for all u € G.vertices()
u.setLabel UNEXPLORED)

for all ¢ € G.edges()
e.setLabelUNEXPLORED)

Algorithm DFS(G, v)

Input graph G and a start vertex v of G

Output labeling of the edges of G
in the connected component of v
as discovery edges and back edges

v.setLabel(VISITED)

for all e € G.incidentEdges(v)
if e.getLabel() = UNEXPLORED
w <« e.opposite(v)
if w.getLabel() = UNEXPLORED

e.setLabel(DISCOVERY)
for all v € G.vertices() DFS(G, w)
if v.getLabel() = UNEXPLORED else
DFS(G, v) e.setLabel(BACK)

32

31

DFS and Maze Traversal

@ The DFS algorithm is similar
to a classic strategy for
exploring a maze

m We mark each intersection,
corner and dead end (vertex)

v

visited _
m We mark each corridor (edge) 1

traversed v
m We keep track of the path i

back to the entrance (start
vertex) by means of a rope

(recursion stack) j

———l

Properties of DFS

Property 1
DFS(G, v) visits all the

vertices and edges in the
connected component of -

Property 2 G
The discovery edges
labeled by DFS(G, v)
form a spanning tree of
the connected component
of v

y t .
|
|
|
|

33

34

Analysis of DFS

@ Setting/getting a vertex/edge label takes O(1) time

@ Each vertex is labeled twice
m once as UNEXPLORED
m once as VISITED

@ Each edge is labeled twice

m once as UNEXPLORED
m once as DISCOVERY or BACK

¥ Method incidentEdges is called once for each vertex
m Complexity of v.incidentEdges: deg(v)

@ DFS runs in O(n + m) time provided the graph is represented by

the adjacency list structure

= Recall that 2, deg(v) = 2m

Path Finding

@ We can specialize the DFS
algorithm to find a path between
two given vertices u and z using
the template method pattern

@® We call DFS(G, u) with u as the
start vertex

@ We use a stack S to keep track of
the path between the start vertex
and the current vertex

4 As soon as destination vertex z is
encountered, we return the path
as the contents of the stack

Algorithm pathDFS(G, v, 7)
v.setLabel(VISITED)
S.push(v)
if v=z
return S.elements()
for all e € v.incidentEdges()
if e.getLabel()= UNEXPLORED
w < e.opposite(v)
if w.getLabel() = UNEXPLORED
e.setLabel(DISCOVERY)
S.push(e)
pathDFS(G, w, 7)
S.pop(e)
else
e.setLabel(BACK)

S.pop(v)

36

Cycle Finding

@ We can specialize the DFS
algorithm to find a simple cycle
using the template method
pattern

@ We use a stack S to keep track of
the path between the start vertex
and the current vertex

@ As soon as a back edge (v, w) is
encountered, we return the cycle
as the portion of the stack from

the top to vertex w

Algorithm cycleDFS(G, v, 7)
v.setLabel(VISITED)
S.push(v)
for all e € v.incidentEdges()
if e.getLabel() = UNEXPLORED
w < e.opposite(v)
S.push(e)
if w.getLabel() = UNEXPLORED
e.setLabel(DISCOVERY)
pathDFS(G, w, 7)
S.pop(e)
else
T < new empty stack
repeat
0 < S.pop()
T.push(o)
until 0 =w
return Zelements()
S.pop(v)

V

Breadth-First Search

V4

37

38

Breadth-First Search

@ Breadth-first search (BFS) is
another general technique
for traversing a graph

@ Let’s look at the example

39

Example

@ unexplored vertex
@ visited vertex
— unexplored edge
— discovery edge
— — =» cross edge

40

Example (cont.)

42

Breadth-First Search

@ A BFS traversal of a graph G

m Visits all the vertices and
edges of G

m Determines whether G is
connected

m Computes the connected
components of G

m Computes a spanning forest
of G

BFS Algorithm

@ The algorithm uses a mechanism for
setting and getting “labels” of
vertices and edges

@ BFS on a graph with n vertices
and m edges takes O(n + m)
time

@ BFS can be further extended
to solve other graph
problems

m Find and report a path between
two given vertices

m Can label each vertex by the
length of a shortest path (in
terms of # of edges) from the
start vertex s

m Find a simple cycle, if there is
one

43

Algorithm BFS(G, s)

Algorithm BFS(G)
Input graph G
Output labeling of the edges

and partition of the
vertices of G

for all u € G.vertices()
u.setLabel(UNEXPLORED)
for all ¢ € G.edges()
e.setLabel(UNEXPLORED)
for all v € G.vertices()
if v.getLabel() = UNEXPLORED
BFS(G, v)

L, < new empty sequence
L.insertBack(s)
s.setLabel(VISITED)
i< 0
while —L.empty()
L; | < new empty sequence
for all v € L.elements()
for all e € v.incidentEdges()
if e.getLabel() = UNEXPLORED
w <« e.opposite(v)
if w.getLabel() = UNEXPLORED
e.setLabel(DISCOVERY)
w.setLabel(VISITED)
L; ,.insertBack(w)
else
e.setLabel(CROSS)
1<+l

44

Properties

Notation
G,: connected component of s

Property 1

BFS(G, s) visits all the vertices
and edges of G

Property 2
The discovery edges labeled by

BFS(G, s) form a spanning tree
T, of G|

Property 3
For each vertex vin L;

m The path of T;fromstovhasi
edges

m Every path from s to v in G has
at least i edges (i.e., find a
shortest path)

45

46

Analysis

@ Setting/getting a vertex/edge label takes O(1) time

@ Each vertex is labeled twice
m once as UNEXPLORED
m once as VISITED

@ Each edge is labeled twice
m once as UNEXPLORED
m once as DISCOVERY or CROSS

@ Each vertex is inserted once into a sequence L;
@ Method incidentEdges is called once for each vertex

@ BFS runs in O(n + m) time provided the graph is represented by
the adjacency list structure

= Recall that 2, deg(v) = 2m

47

Applications

@ Using the template method pattern, we can specialize
the BFS traversal of a graph G to solve the following
problems in O(n + m) time

m Compute the connected components of G
m Compute a spanning forest of G
m Find a simple cycle in G, or report that G is a forest

m Given two vertices of G, find a path in G between them with
the minimum number of edges, or report that no such path
exists

48

DFS vs. BFS

Applications DFS | BFS Biconnected components:

Spanning forest, connected J J - Connected .

components, paths, cycles - Even after removing any
vertex the graph remains

Shortest paths \ connected

Biconnected components J

(how?)

\ ~
(&) (D)
\
\
()
DFS

49

DFS vs. BFS (cont.)

Back edge (v,w) Cross edge (v,w)
m wis an ancestor of vin the m wisinthe same level asv
tree of discovery edges or in the next level

\ S~
(B) (D)
\
N
()
DFS

50

Questions?

