
Red-Black Trees

6

3 8

4

v

z

1

From (2,4) to Red-Black Trees
A red-black tree is a representation of a (2,4) tree by means of a binary tree
whose nodes are colored red or black
In comparison with its associated (2,4) tree, a red-black tree has
n same logarithmic time performance
n simpler implementation with a single node type

2 6 73 54

4 6

2 7

5

3

3

5OR

2

Red-Black Trees
A red-black tree can also be defined as a binary search tree that
satisfies the following properties:
n Root Property: the root is black
n External Property: every leaf is black
n Internal Property: the children of a red node are black (red rule)
n Depth Property: all the leaves have the same black depth (path rule)
n (Question) How is balancing enforced here?

9

154

62 12

7

21

3

Red Black Tree?
19

12 35

0

-10

-5

-8

-6

50

75

135

100

80

4

Red Back Tree?

19

12 35

3 16

0
What if we attach a child
to node 0?

5

Implications
Root Property: the root is black
External Property: every leaf is black
Internal Property: the children of a red node are black (red rule)
Depth Property: all the leaves have the same black depth (path rule)

1. If a red node has any children, it must have two children and they must be
black
n Why? Depth property

2. If a black node has only one “real” child then it must be a ”last” red node
n If the child is black?
n If the child is not the last red?

(Question) How is balancing enforced in R-B tree?
6

Intuition about “rough balancing”
The longest path <= 2 * the shortest path
n Rough balancing à guarantees log(n) height

Why?
n From “red rule” and “path rule”

shortest path = only black nodes
longest path = inserting a red node between two black nodes

7

Root Property: the root is black
External Property: every leaf is black
Internal Property: the children of a red node are black (red rule)
Depth Property: all the leaves have the same black depth (path rule)

Height of a Red-Black Tree
Theorem: A red-black tree storing n entries has height O(log n)
Proof:
n Omitted

The search algorithm for a binary search tree is the same as that
for a binary search tree

By the above theorem, searching in a red-black tree takes O(log
n) time

8

9

Insertion

Insertion
To perform operation put(k, o), we execute the insertion algorithm for binary
search trees and color red the newly inserted node z unless it is the root
n We preserve the root, external, and depth properties
n If the parent v of z is black, we also preserve the internal property and we are done
n Else (v is red) we have a double red (i.e., a violation of the internal property),

which requires a reorganization of the tree
n Goal: Removing double read without breaking the depth property

Example where the insertion of 4 causes a double red:

6

3 8

6

3 8

4
z

v v

z

10

Remedying a Double Red
Consider a double red with child z and parent v, and let w be the sibling of v

4

6
7z

vw
2

4 6 7

.. 2 ..

Case 1: w is black
n Viewpoint

The double red is an incorrect
replacement of a 4-node

n Restructuring: we change the
4-node replacement

Case 2: w is red
n Viewpoint

The double red corresponds
to an overflow

n Recoloring: we perform the
equivalent of a split

4

6
7z

v

2 4 6 7

2
w

11

Restructuring
A restructuring remedies a child-parent double red when the parent red node
has a black sibling
It is equivalent to restoring the correct replacement of a 4-node
The internal property is restored and the other properties are preserved

4

6

7
z

vw
2

4 6 7

.. 2 ..

4

6
7

z

v

w
2

4 6 7

.. 2 ..

12

Restructuring (cont.)
There are four restructuring configurations depending on whether the double
red nodes are left or right children

2

4

6
6

2

4
6

4

2
2

6

4

2 6

4

13

Recoloring
A recoloring remedies a child-parent double red when the parent red node has
a red sibling
The parent v and its sibling w become black and the grandparent u becomes
red, unless it is the root
It is equivalent to performing a split on a 5-node
The double red violation may propagate to the grandparent u

4

6
7z

v

2 4 6 7

2
w 4

6
7z

v

6 7

2
w

… 4 …

2

14

15

vw

RST

RCL

vw

vw

RST

vw

RCL

16

vw

RST

RCL

vw

RST

Analysis of Insertion

Recall that a red-black tree has
O(log n) height
Step 1 takes O(log n) time
because we visit O(log n) nodes
Step 2 takes O(1) time
Step 3 takes O(log n) time
because we perform
n O(log n) recolorings, each

taking O(1) time, and
n at most one restructuring

taking O(1) time

Thus, an insertion in a red-black
tree takes O(log n) time

Algorithm put(k, o)

1. We search for key k to locate the
insertion node z

2. We add the new entry (k, o) at
node z and color z red

3. while doubleRed(z)
if isBlack(sibling(parent(z)))

z ¬ restructure(z)
return

else { sibling(parent(z) is red }
z ¬ recolor(z)

17

18

RB-Tree: Deletion

To perform operation erase(k), we first execute the deletion algorithm for
binary search trees

Deletion: Example 1

19

delete 30 Copy inorder successor

Just delete the copied 35, and
color the remaining node
in black. Then, we are done.

Implication:
If the node to be deleted is red,
removing it is fine

10
30

10
305

20 38
null

nullnull

-5 7
null null null null 35null null

10
355

20 38
null

nullnull

-5 7
null null null null 35null null

10
355

20 38
nullnull

-5 7
null null null null null null

Deletion: Example 2
To perform operation erase(k), we first execute the deletion algorithm for
binary search trees

20

delete 30 Copy inorder successor

Just delete the copied 32, and color 35 with
black.

Implication: For a node (with a red child)
to be deleted, delete it and change the red
child’s color.
(35: -1 first and +1 second. So no change)

10
305

20 38
41

35null

-5 7
null null null null 32null null

null null

null null

10
325

20 38
41

35null

-5 7
null null null null 32null null

null null

null null

10
325

20 38
41

null

-5 7
null null null null 35null null

null null null

Deletion: Example 3
What about deleting a node with a black child?

21

Delete 10 Copy inorder successor

Delete 20.

Problem: A path of only 2 blacks

Regard this as “double black nodes”

10
30-10

20 38
null

null null

null null null

20
30-10

20 38
null

null null

null null null

20
30-10

38
null

null null null

null

Deletion
To perform operation erase(k), we first execute the deletion algorithm for
binary search trees
n Enough to consider the removal of an entry at a node with an external child

(To remove a node with both internal children, we first copy the inorder successor,
and then …)

Notations
n v : the internal node removed,

w “myself”

n w : the external node removed,
w “my lonely child”

n r : the sibling of w
w “my other child”

n x : the parent of v
w “my father”

22

10
305

20 38

41
35null

-5 7
null null null null 32null null

null null

null null

x

v

w r

Delete 30

Questions
l How to handle “double black nodes”

l Are there some cases in handling those? Yes

l Are you ready for ”cases”?

l It’s really, really complex, but if you concentrate, then you can follow it.

23

Deletion: Algorithm Overview (1)
First, remove v and w, and make r a
child of x

If either of v or r was red, we
color r black and we are done
(Examples 1 and 2)

Else (v and r were both black)
we color r double black, which
is a violation of the internal
property requiring a
reorganization of the tree
(Examples 3)

24

10
305

20 38
null

nullnull

-5 7
null null null null 35null null

10
355

20 38
null

nullnull

-5 7
null null null null 35null null

10
355

20 38
nullnull

-5 7
null null null null null null

delete 30

v

x

w r

Deletion: Algorithm Overview (2)
First, remove v and w, and make r a
child of x

If either of v or r was red, we
color r black and we are done
(Examples 1 and 2)

Else (v and r were both black)
we color r double black, which
is a violation of the internal
property requiring a
reorganization of the tree
(Examples 3)

25

delete 30

v
x

w r

10
305
20 38

41
35null

-5 7
null null null null 32null null

null null

null null

10
325
20 38

41
35null

-5 7
null null null null 32null null

null null

null null

10
325
20 38

41
null

-5 7
null null null null 35null null

null null null

Deletion: Algorithm Overview (2)
First, remove v and w, and make r a child of x

If either of v or r was red, we color r black and we are done (Examples 1 and 2)
(Let’s call this Case 0)

Else (v and r were both black) we color r double black, which is a violation of the
internal property requiring a reorganization of the tree (Examples 3)

l Notations after removing v and w
l y: sibling of r
l z: child of y

l We now divide the cases, depending of the color of y and z

26

Recall: Example 3. Notations again!
What about deleting a node with a black child?

27

Delete 10 Copy inorder successor

Delete 20.

Problem: A path of only 2 blacks

Regard this as “double black nodes”

10
30-10

20 38
null

null null

null null null

20
30-10

20 38
null

null null

null null null

x

v

w r

20
30-10

38
null

null null null

null

x

r y

z

Handling Double Black Nodes: Case 1
Case 1: The sibling y of r is black, and has a red child z
n We perform a restructuring, and we are done

28

z is the left child

z is the right child

Double black node solved?

Handling Double Black Nodes: Case 2
Case 2: The sibling y of r is black, and y’s both children are
black
n We perform a recoloring
n Case 2-1: x (r’s parent) is red

29

Color x black and color y red

Handling Double Black Nodes: Case 2
Case 2: The sibling y of r is black, and y’s both children are
black
n We perform a recoloring
n Case 2-2: x (r’s parent) is black

30

Color y red (which solves r’s double black),
and make x “double black”
(propagates the double black up),
then reconsider the cases for x

Handling Double Black Nodes: Case 3
Case 3: The sibling y of r is red
n We perform adjustment

w If y is the right child of x, then let z be the right child of y
w If y is the left child of x, then let z be the left child of y

n Case 3-1: z is the left child of y

n Case 3-2: z is the right child
of y à Similarly, we apply

31

Perform restructuring
Make y be the parent of x
Color y black and x red
(double black not yet solved)
à The sibling of r is black (why?)
à Case 1 or Case 2 applies

Double Black Node Handling: Summary
The algorithm for remedying a double black node r with sibling y considers
three cases
Case 1: y is black and has a red child
n We perform a restructuring, and we are done

Case 2: y is black and its children are both black
n We perform a recoloring, which may propagate up the double black violation

Case 3: y is red
n We perform an adjustment, equivalent to choosing a different representation of a

3-node, after which either Case 1 or Case 2 applies

Deletion in a red-black tree takes O(log n) time

32

Example: Remove 3

33

v is red à Case 0 (either v or r is red)
Remove v and w and color r black

v

w r

x

r

Example: Remove 12

None of v and r is red à Not Case 0
y is black, which has red child
n à Case 1, restructuring

34

v

w r r

x

y

z

x

Example: Remove 17

v is red àCase 0

35

v

Example: Remove 18

None of v and r is red à Not Case 0
y is black, having both black children
àCase 2
n x is red àCase 2-1, recoloring

between x and y

36

v

w r

x

y r

x

y

Example: Remove 15

Case 0 (now you know, right?)

37

Example: Remove 16

y is red à Case 3
y is the left child of x, thus z is node 4
(left child of y) à Case 3-1
Adjustment à node 14 becomes double
black à new y (sibling of x)
y has both black children, and x is red
n à Case 2-1, recoloring, then we’re done

38

r

x

y

z
r

x

y

Questions?

