Red-Black Trees

From $(2,4)$ to Red-Black Trees

* A red-black tree is a representation of a $(2,4)$ tree by means of a binary tree whose nodes are colored red or black
* In comparison with its associated $(2,4)$ tree, a red-black tree has
- same logarithmic time performance
- simpler implementation with a single node type

Red-Black Trees

- A red-black tree can also be defined as a binary search tree that satisfies the following properties:
- Root Property: the root is black
- External Property: every leaf is black
- Internal Property: the children of a red node are black (red rule)
- Depth Property: all the leaves have the same black depth (path rule)
- (Question) How is balancing enforced here?

Red Black Tree?

Red Back Tree?

What if we attach a child to node 0?

Implications

* Root Property: the root is black
* External Property: every leaf is black
* Internal Property: the children of a red node are black (red rule)
* Depth Property: all the leaves have the same black depth (path rule)
* 1. If a red node has any children, it must have two children and they must be black
- Why? Depth property
* 2. If a black node has only one "real" child then it must be a "last" red node
- If the child is black?
- If the child is not the last red?
- (Question) How is balancing enforced in R-B tree?

Intuition about "rough balancing"

- The longest path <= 2 * the shortest path
- Rough balancing \rightarrow guarantees log(n) height
* Why?
- From "red rule" and "path rule" shortest path = only black nodes
longest path = inserting a red node between two black nodes

Root Property: the root is black
External Property: every leaf is black
Internal Property: the children of a red node are black (red rule)
Depth Property: all the leaves have the same black depth (path rule)

Height of a Red-Black Tree

- Theorem: A red-black tree storing \boldsymbol{n} entries has height $\boldsymbol{O}(\log \boldsymbol{n})$ Proof:
- Omitted
* The search algorithm for a binary search tree is the same as that for a binary search tree
- By the above theorem, searching in a red-black tree takes $\boldsymbol{O}(\log$ n) time

Insertion

Insertion

* To perform operation $\operatorname{put}(\boldsymbol{k}, \boldsymbol{o})$, we execute the insertion algorithm for binary search trees and color red the newly inserted node \boldsymbol{z} unless it is the root
- We preserve the root, external, and depth properties
- If the parent \boldsymbol{v} of \boldsymbol{z} is black, we also preserve the internal property and we are done
- Else (\boldsymbol{v} is red) we have a double red (i.e., a violation of the internal property), which requires a reorganization of the tree
- Goal: Removing double read without breaking the depth property
- Example where the insertion of 4 causes a double red:

Remedying a Double Red

* Consider a double red with child \boldsymbol{z} and parent \boldsymbol{v}, and let \boldsymbol{w} be the sibling of \boldsymbol{v}

Case 1: w is black

- Viewpoint The double red is an incorrect replacement of a 4-node
- Restructuring: we change the 4-node replacement

Case 2: w is red

- Viewpoint

The double red corresponds to an overflow

- Recoloring: we perform the equivalent of a split

Restructuring

* A restructuring remedies a child-parent double red when the parent red node has a black sibling
* It is equivalent to restoring the correct replacement of a 4-node
* The internal property is restored and the other properties are preserved

Restructuring (cont.)

* There are four restructuring configurations depending on whether the double red nodes are left or right children

Recoloring

* A recoloring remedies a child-parent double red when the parent red node has a red sibling
* The parent \boldsymbol{v} and its sibling \boldsymbol{w} become black and the grandparent \boldsymbol{u} becomes red, unless it is the root
* It is equivalent to performing a split on a 5-node
* The double red violation may propagate to the grandparent \boldsymbol{u}

(c) RST

(d)

(f)
(g)
(h)

(i) RST

(k) RCL
(1)

(m) RST

(o) RCL

(n)

(p) RST

(q)

Analysis of Insertion

Algorithm $p u t(k, o)$

1. We search for key \boldsymbol{k} to locate the insertion node \boldsymbol{z}
2. We add the new entry $(\boldsymbol{k}, \boldsymbol{o})$ at node \boldsymbol{z} and color \boldsymbol{z} red
3. while doubleRed(z)
if isBlack(sibling(parent(z)))
$z \leftarrow \operatorname{restructure}(z)$
return
else $\{\operatorname{sibling}(\operatorname{parent}(z)$ is red \}
$z \leftarrow \operatorname{recolor}(z)$

- Recall that a red-black tree has $\boldsymbol{O}(\log \boldsymbol{n})$ height
- Step 1 takes $\boldsymbol{O}(\log \boldsymbol{n})$ time because we visit $\boldsymbol{O}(\log \boldsymbol{n})$ nodes
- Step 2 takes $\boldsymbol{O}(1)$ time
* Step 3 takes $\boldsymbol{O}(\log \boldsymbol{n})$ time because we perform
- $\boldsymbol{O}(\log \boldsymbol{n})$ recolorings, each taking $\boldsymbol{O}(1)$ time, and
- at most one restructuring taking $\boldsymbol{O}(1)$ time
- Thus, an insertion in a red-black tree takes $\boldsymbol{O}(\log \boldsymbol{n})$ time

RB-Tree: Deletion

Deletion: Example 1

* To perform operation erase($\boldsymbol{k})$, we first execute the deletion algorithm for binary search trees

Just delete the copied 35 , and color the remaining node in black. Then, we are done.

Implication:
If the node to be deleted is red, removing it is fine

Deletion: Example 2

* To perform operation erase($\boldsymbol{k})$, we first execute the deletion algorithm for binary search trees

Just delete the copied 32, and color 35 with black.

Implication: For a node (with a red child) to be deleted, delete it and change the red child's color.
(35: -1 first and +1 second. So no change)

Deletion: Example 3

- What about deleting a node with a black child?

Delete 10

Delete 20.

Problem: A path of only 2 blacks

Regard this as "double black nodes"

Deletion

* To perform operation erase($\boldsymbol{k})$, we first execute the deletion algorithm for binary search trees
- Enough to consider the removal of an entry at a node with an external child (To remove a node with both internal children, we first copy the inorder successor, and then ...)
- Notations
- v : the internal node removed, - "myself"
- \boldsymbol{w} : the external node removed,
- "my lonely child"
- \boldsymbol{r} : the sibling of \boldsymbol{w}
* "my other child"
- \boldsymbol{x} : the parent of \boldsymbol{v}
* "my father"

Questions

- How to handle "double black nodes"
- Are there some cases in handling those? Yes
- Are you ready for "cases"?
- It's really, really complex, but if you concentrate, then you can follow it.

Deletion: Algorithm Overview (1)

First, remove v and w, and make r a child of x

If either of \boldsymbol{v} or \boldsymbol{r} was red, we color r black and we are done (Examples 1 and 2)

Else (\boldsymbol{v} and r were both black) we color r double black, which is a violation of the internal
property requiring a reorganization of the tree (Examples 3)

Deletion: Algorithm Overview (2)

First, remove v and w, and make r a child of x

If either of \boldsymbol{v} or \boldsymbol{r} was red, we color r black and we are done (Examples 1 and 2)

Else (\boldsymbol{v} and \boldsymbol{r} were both black) we color r double black, which is a violation of the internal
property requiring a reorganization of the tree (Examples 3)

Deletion: Algorithm Overview (2)

First, remove v and w, and make r a child of x

If either of \boldsymbol{v} or \boldsymbol{r} was red, we color \boldsymbol{r} black and we are done (Examples 1 and 2) (Let's call this Case 0)

Else (v and r were both black) we color r double black, which is a violation of the internal property requiring a reorganization of the tree (Examples 3)

- Notations after removing v and w
- y : sibling of r
- z : child of y
- We now divide the cases, depending of the color of y and z

Recall: Example 3. Notations again!

* What about deleting a node with a black child?

Copy inorder successor

Delete 20.

Problem: A path of only 2 blacks

Regard this as "double black nodes"

Handling Double Black Nodes: Case 1

- Case 1: The sibling y of r is black, and has a red child z
- We perform a restructuring, and we are done

Double black node solved?

Handling Double Black Nodes: Case 2

- Case 2: The sibling y of r is black, and y's both children are black
- We perform a recoloring
- Case 2-1: x (r's parent) is red

Color x black and color y red

Handling Double Black Nodes: Case 2

* Case 2: The sibling y of r is black, and $y^{\prime} s$ both children are black
- We perform a recoloring
- Case 2-2: x (r’s parent) is black

Color y red (which solves r's double black), and make x "double black" (propagates the double black up), then reconsider the cases for x

Handling Double Black Nodes: Case 3

- Case 3: The sibling y of r is red
- We perform adjustment
- If y is the right child of x, then let z be the right child of y
- If y is the left child of x, then let z be the left child of y
- Case 3-1: z is the left child of y

- Case 3-2: z is the right child of $y \rightarrow$ Similarly, we apply

Perform restructuring Make y be the parent of x Color y black and x red (double black not yet solved)
\rightarrow The sibling of r is black (why?)
\rightarrow Case 1 or Case 2 applies

Double Black Node Handling: Summary

* The algorithm for remedying a double black node \boldsymbol{r} with sibling \boldsymbol{y} considers three cases
Case 1: \boldsymbol{y} is black and has a red child
- We perform a restructuring, and we are done

Case 2: y is black and its children are both black

- We perform a recoloring, which may propagate up the double black violation

Case 3: y is red

- We perform an adjustment, equivalent to choosing a different representation of a 3 -node, after which either Case 1 or Case 2 applies
- Deletion in a red-black tree takes $\boldsymbol{O}(\log \boldsymbol{n})$ time

Example: Remove 3

* v is red \rightarrow Case 0 (either vor r is red)
- Remove v and w and color r black

Example: Remove 12

(b)

* None of v and r is red \rightarrow Not Case 0
* y is black, which has red child
- \rightarrow Case 1 , restructuring

(c)

(d)

Example: Remove 17

$\leftrightarrow \mathrm{v}$ is red \rightarrow Case 0

Example: Remove 18

(e)

- None of v and r is red \rightarrow Not Case 0
- y is black, having both black children \rightarrow Case 2
- x is red \rightarrow Case $2-1$, recoloring between x and y

(f)

(g)

Example: Remove 15

- Case 0 (now you know, right?)

Example: Remove 16

$\rangle \mathrm{y}$ is red \rightarrow Case 3

* y is the left child of x, thus z is node 4 (left child of y) \rightarrow Case 3-1
\star Adjustment \rightarrow node 14 becomes double black \rightarrow new y (sibling of x)
* y has both black children, and x is red
- \rightarrow Case 2-1, recoloring, then we're done

(k)

Questions?

