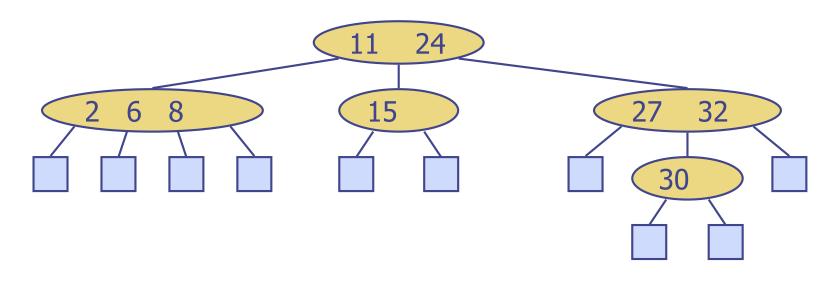
(2,4) Trees: Very Briefly 9 10 14 2 5 7

Multi-Way Search Tree

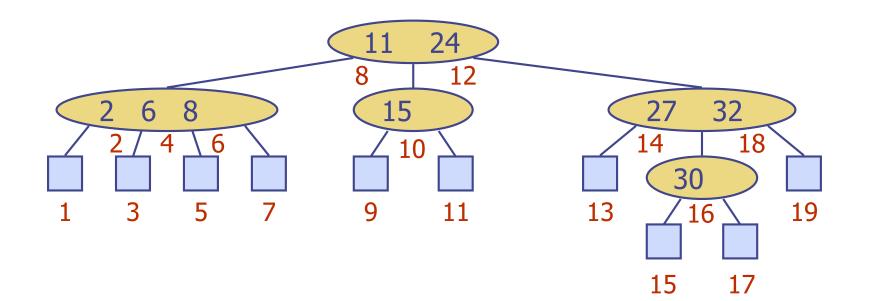
A multi-way search tree is an ordered tree such that

- Each internal node has at least two children and stores d-1 key-element items (k_i, o_i) , where d is the number of children
- For a node with children $v_1 v_2 \dots v_d$ storing keys $k_1 k_2 \dots k_{d-1}$
 - keys in the subtree of v_1 are less than k_1
 - keys in the subtree of v_i are between k_{i-1} and k_i (i = 2, ..., d 1)
 - keys in the subtree of v_d are greater than k_{d-1}
- The leaves store no items and serve as placeholders



Multi-Way Inorder Traversal

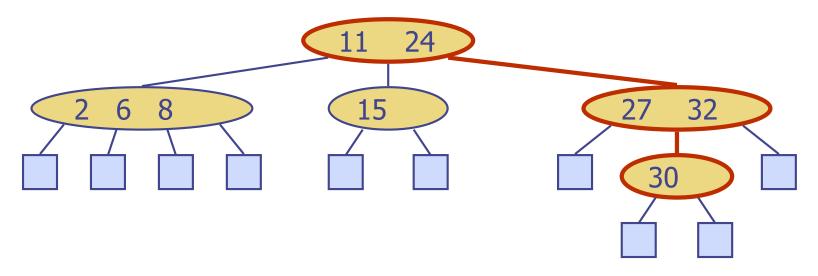
- We can extend the notion of inorder traversal from binary trees to multi-way search trees
- Namely, we visit item (k_i, o_i) of node v between the recursive traversals of the subtrees of v rooted at children v_i and v_{i+1}
- An inorder traversal of a multi-way search tree visits the keys in increasing order



Multi-Way Searching

- Similar to search in a binary search tree
- \blacklozenge A each internal node with children $v_1 v_2 \dots v_d$ and keys $k_1 k_2 \dots k_{d-1}$
 - $k = k_i$ (i = 1, ..., d 1): the search terminates successfully
 - $k < k_1$: we continue the search in child v_1
 - $k_{i-1} < k < k_i$ (i = 2, ..., d 1): we continue the search in child v_i
 - $k > k_{d-1}$: we continue the search in child v_d
 - Reaching an external node terminates the search unsuccessfully

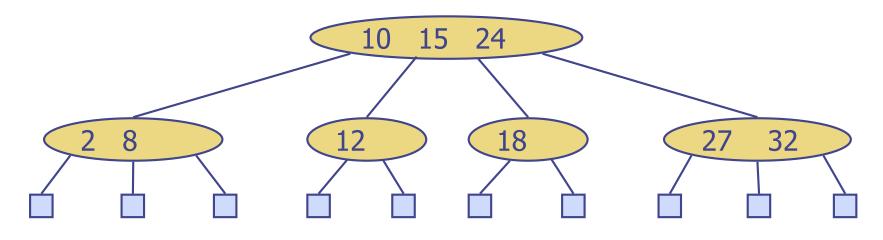
Example: search for 30



(2,4) Trees

- A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way search with the following properties
 - Node-Size Property: every internal node has at most four children (i.e., three keys)
 - Depth Property: all the external nodes have the same depth

Depending on the number of children, an internal node of a (2,4) tree is called a 2-node, 3-node or 4-node

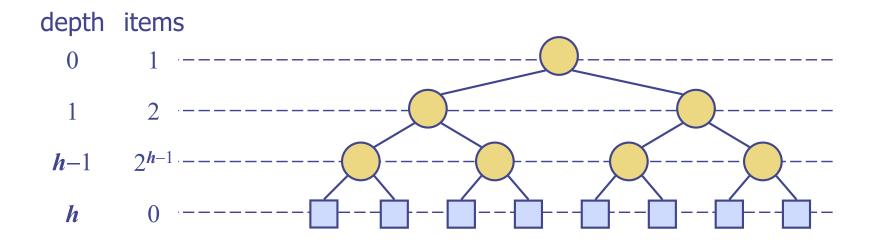


(Question) Why not like the "height-balancing property" of AVL trees?

Height of a (2,4) Tree

• Theorem: A (2,4) tree storing n items has height $O(\log n)$

🔶 Proof: Obvious 😊

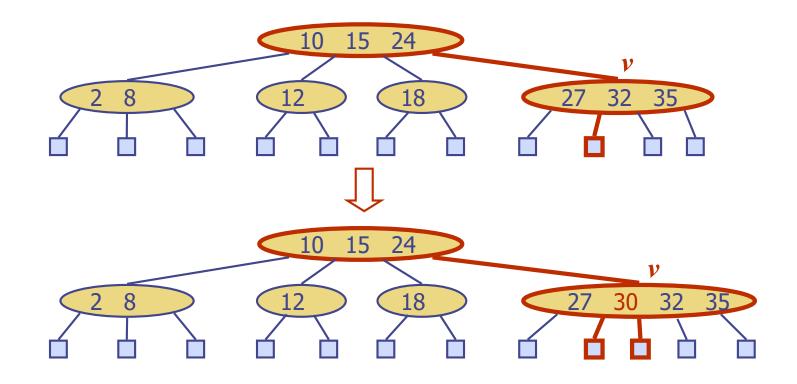


Insertion

Insert a new item (k, o) at the parent v of the leaf reached by searching for k

- We preserve the depth property but
- We may cause an overflow (i.e., node v may become a 5-node)

Example: inserting key 30 causes an overflow

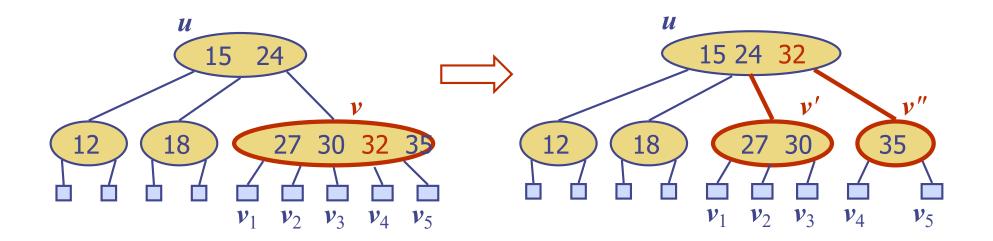


Overflow and Split

We handle an overflow at a 5-node v with a split operation:

- let $v_1 \dots v_5$ be the children of v and $k_1 \dots k_4$ be the keys of v
- node v is replaced by nodes v' and v"
 - v' is a 3-node with keys $k_1 k_2$ and children $v_1 v_2 v_3$
 - v'' is a 2-node with key k_4 and children $v_4 v_5$
- key k_3 is inserted into the parent u of v (a new root may be created)

The overflow may propagate to the parent node u



Analysis of Insertion

Algorithm *put*(*k*, *o*)

- 1. We search for key *k* to locate the insertion node *v*
- 2. We add the new entry (*k*, *o*) at node *v*
- 3. while *overflow(v)* if *isRoot(v)*

create a new empty root above *v*

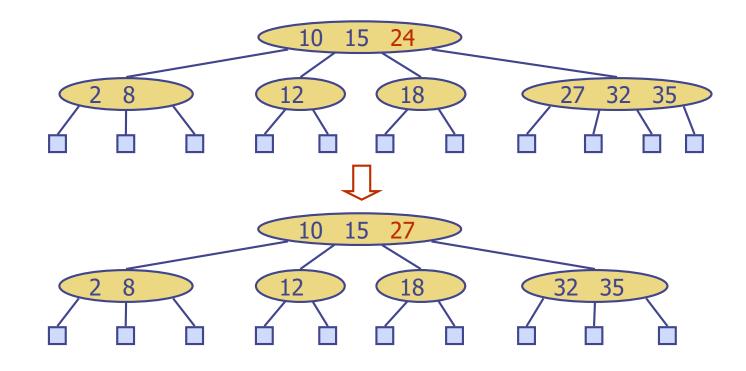
 $v \leftarrow split(v)$

Let T be a (2,4) tree with n items

- Tree *T* has *O*(log *n*) height
- Step 1 takes O(log n) time because we visit
 O(log n) nodes
- Step 2 takes **O**(1) time
- Step 3 takes O(log n) time because each split takes O(1) time and we perform O(log n) splits
- Thus, an insertion in a (2,4)
 tree takes O(log n) time

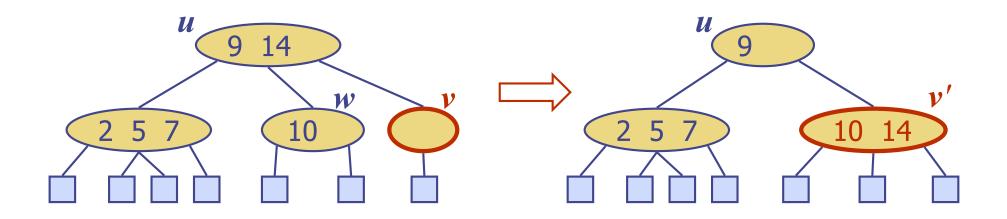
Deletion

- We reduce deletion of an entry to the case where the item is at the node with leaf children
- Otherwise, we replace the entry with its inorder successor (or, equivalently, with its inorder predecessor) and delete the latter entry
- Example: to delete key 24, we replace it with 27 (inorder successor)



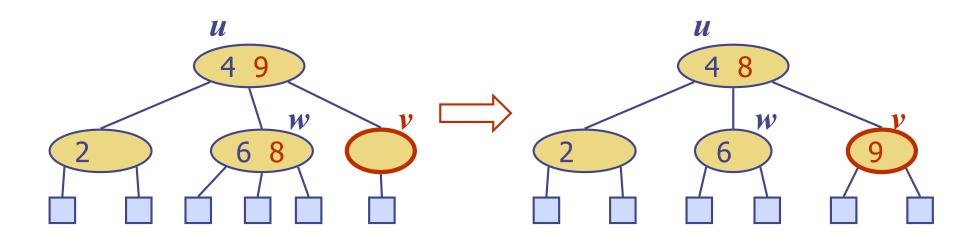
Underflow and Fusion

- Deleting an entry from a node v may cause an underflow, where node v becomes a 1-node with one child and no keys
- To handle an underflow at node v with parent u, we consider two cases
- Case 1: the adjacent siblings of *v* are 2-nodes
 - Fusion operation: we merge v with an adjacent sibling w and move an entry from u to the merged node v'
 - After a fusion, the underflow may propagate to the parent *u*



Underflow and Transfer

- Case 2: an adjacent sibling w of v is a 3-node or a 4-node
 - Transfer operation:
 - 1. we move a child of *w* to *v*
 - 2. we move an item from **u** to **v**
 - 3. we move an item from *w* to *u*
 - After a transfer, no underflow occurs



Analysis of Deletion

- Let T be a (2,4) tree with n items
 - Tree T has O(log n) height
- In a deletion operation
 - We visit O(log n) nodes to locate the node from which to delete the entry
 - We handle an underflow with a series of O(log n) fusions, followed by at most one transfer
 - Each fusion and transfer takes **O**(1) time

Thus, deleting an item from a (2,4) tree takes O(log n) time

Comparison of Map Implementations

	Find	Put	Erase	Notes
Hash Table	1 expected	1 expected	1 expected	 no ordered map methods simple to implement
Skip List	log <i>n</i> high prob.	log <i>n</i> high prob.	log <i>n</i> high prob.	 randomized insertion simple to implement
AVL and (2,4) Tree	log n worst-case	log n worst-case	log n worst-case	 complex to implement

Questions?