$(2,4)$ Trees: Very Briefly

Multi-Way Search Tree

A multi-way search tree is an ordered tree such that

- Each internal node has at least two children and stores \boldsymbol{d}-1 key-element items $\left(\boldsymbol{k}_{\boldsymbol{i}}, \boldsymbol{o}_{\boldsymbol{i}}\right)$, where \boldsymbol{d} is the number of children
- For a node with children $\boldsymbol{v}_{1} \boldsymbol{v}_{2} \ldots \boldsymbol{v}_{\boldsymbol{d}}$ storing keys $\boldsymbol{k}_{1} \boldsymbol{k}_{2} \ldots \boldsymbol{k}_{\boldsymbol{d}-1}$
- keys in the subtree of \boldsymbol{v}_{1} are less than \boldsymbol{k}_{1}
- keys in the subtree of \boldsymbol{v}_{i} are between \boldsymbol{k}_{i-1} and $\boldsymbol{k}_{\boldsymbol{i}}(\boldsymbol{i}=2, \ldots, \boldsymbol{d}-1)$
- keys in the subtree of $\boldsymbol{v}_{\boldsymbol{d}}$ are greater than $\boldsymbol{k}_{\boldsymbol{d}-1}$
- The leaves store no items and serve as placeholders

Multi-Way Inorder Traversal

We can extend the notion of inorder traversal from binary trees to multi-way search trees

* Namely, we visit item $\left(\boldsymbol{k}_{\boldsymbol{i}}, \boldsymbol{o}_{\boldsymbol{i}}\right)$ of node \boldsymbol{v} between the recursive traversals of the subtrees of \boldsymbol{v} rooted at children $\boldsymbol{v}_{\boldsymbol{i}}$ and $\boldsymbol{v}_{\boldsymbol{i}+1}$
* An inorder traversal of a multi-way search tree visits the keys in increasing order

Multi-Way Searching

Similar to search in a binary search tree
\diamond A each internal node with children $\boldsymbol{v}_{1} \boldsymbol{v}_{2} \ldots \boldsymbol{v}_{\boldsymbol{d}}$ and keys $\boldsymbol{k}_{1} \boldsymbol{k}_{2} \ldots \boldsymbol{k}_{d-1}$

- $\boldsymbol{k}=\boldsymbol{k}_{\boldsymbol{i}}(\boldsymbol{i}=1, \ldots, \boldsymbol{d}-1)$: the search terminates successfully
- $\boldsymbol{k}<\boldsymbol{k}_{1}$: we continue the search in child \boldsymbol{v}_{1}
- $\boldsymbol{k}_{\boldsymbol{i}-1}<\boldsymbol{k}<\boldsymbol{k}_{\boldsymbol{i}}(\boldsymbol{i}=2, \ldots, \boldsymbol{d}-1)$: we continue the search in child $\boldsymbol{v}_{\boldsymbol{i}}$
- $\boldsymbol{k}>\boldsymbol{k}_{\boldsymbol{d}-1}$: we continue the search in child $\boldsymbol{v}_{\boldsymbol{d}}$

Reaching an external node terminates the search unsuccessfully
Example: search for 30

$(2,4)$ Trees

A $(2,4)$ tree (also called 2-4 tree or 2-3-4 tree) is a multi-way search with the following properties

- Node-Size Property: every internal node has at most four children (i.e., three keys)
- Depth Property: all the external nodes have the same depth

Depending on the number of children, an internal node of a $(2,4)$ tree is called a 2 -node, 3 -node or 4-node

(Question) Why not like the "height-balancing property" of AVL trees?

Height of a $(2,4)$ Tree

Theorem: A $(2,4)$ tree storing \boldsymbol{n} items has height $\boldsymbol{O}(\log \boldsymbol{n})$

Proof: Obvious ©
depth items

Insertion

Insert a new item $(\boldsymbol{k}, \boldsymbol{o})$ at the parent \boldsymbol{v} of the leaf reached by searching for \boldsymbol{k}

- We preserve the depth property but
- We may cause an overflow (i.e., node \boldsymbol{v} may become a 5-node)

Example: inserting key 30 causes an overflow

Overflow and Split

We handle an overflow at a 5-node \boldsymbol{v} with a split operation:

- let $\boldsymbol{v}_{1} \ldots \boldsymbol{v}_{5}$ be the children of \boldsymbol{v} and $\boldsymbol{k}_{1} \ldots \boldsymbol{k}_{4}$ be the keys of \boldsymbol{v}
- node v is replaced by nodes v^{\prime} and $v^{\prime \prime}$
- \boldsymbol{v}^{\prime} is a 3 -node with keys $\boldsymbol{k}_{1} \boldsymbol{k}_{2}$ and children $\boldsymbol{v}_{1} \boldsymbol{v}_{2} \boldsymbol{v}_{3}$
- $\boldsymbol{v}^{\prime \prime}$ is a 2 -node with key \boldsymbol{k}_{4} and children $\boldsymbol{v}_{4} \boldsymbol{v}_{5}$
- key \boldsymbol{k}_{3} is inserted into the parent \boldsymbol{u} of \boldsymbol{v} (a new root may be created)

The overflow may propagate to the parent node \boldsymbol{u}

Analysis of Insertion

Algorithm $\operatorname{put}(\boldsymbol{k}, \boldsymbol{o})$

1. We search for key \boldsymbol{k} to locate the insertion node \boldsymbol{v}
2. We add the new entry $(\boldsymbol{k}, \boldsymbol{o})$ at node \boldsymbol{v}

3. while overflow(v)
 if isRoot (v)

create a new empty root above \boldsymbol{v}
$v \leftarrow \operatorname{split}(v)$

Let \boldsymbol{T} be a $(2,4)$ tree with \boldsymbol{n} items

- Tree \boldsymbol{T} has $\boldsymbol{O}(\log \boldsymbol{n})$ height
- Step 1 takes $\boldsymbol{O}(\log \boldsymbol{n})$ time because we visit $\boldsymbol{O}(\log \boldsymbol{n})$ nodes
- Step 2 takes $\boldsymbol{O}(1)$ time
- Step 3 takes $\boldsymbol{O}(\log \boldsymbol{n})$ time because each split takes $\boldsymbol{O}(1)$ time and we perform $\boldsymbol{O}(\log \boldsymbol{n})$ splits
Thus, an insertion in a $(2,4)$ tree takes $\boldsymbol{O}(\log \boldsymbol{n})$ time

Deletion

We reduce deletion of an entry to the case where the item is at the node with leaf children

- Otherwise, we replace the entry with its inorder successor (or, equivalently, with its inorder predecessor) and delete the latter entry
- Example: to delete key 24, we replace it with 27 (inorder successor)

Underflow and Fusion

Deleting an entry from a node \boldsymbol{v} may cause an underflow, where node \boldsymbol{v} becomes a 1-node with one child and no keys

- To handle an underflow at node \boldsymbol{v} with parent \boldsymbol{u}, we consider two cases
- Case 1: the adjacent siblings of v are 2-nodes
- Fusion operation: we merge \boldsymbol{v} with an adjacent sibling \boldsymbol{w} and move an entry from \boldsymbol{u} to the merged node \boldsymbol{v}^{\prime}
- After a fusion, the underflow may propagate to the parent \boldsymbol{u}

Underflow and Transfer

Case 2: an adjacent sibling \boldsymbol{w} of \boldsymbol{v} is a 3 -node or a 4-node

- Transfer operation:

1. we move a child of \boldsymbol{w} to \boldsymbol{v}
2. we move an item from \boldsymbol{u} to \boldsymbol{v}
3. we move an item from \boldsymbol{w} to \boldsymbol{u}

- After a transfer, no underflow occurs

Analysis of Deletion

- Let \boldsymbol{T} be a $(2,4)$ tree with \boldsymbol{n} items
- Tree \boldsymbol{T} has $\boldsymbol{O}(\log \boldsymbol{n})$ height
- In a deletion operation
- We visit $\boldsymbol{O}(\log \boldsymbol{n})$ nodes to locate the node from which to delete the entry
- We handle an underflow with a series of $\boldsymbol{O}(\log \boldsymbol{n})$ fusions, followed by at most one transfer
- Each fusion and transfer takes $\boldsymbol{O}(1)$ time
- Thus, deleting an item from a $(2,4)$ tree takes $\boldsymbol{O}(\log \boldsymbol{n})$ time

Comparison of Map Implementations

	Find	Put	Erase	Notes
Hash Table	1 expected	1 expected	1 expected	o no ordered map methods o simple to implement
Skip List	$\log \boldsymbol{n}$ high prob.	$\log \boldsymbol{n}$ high prob.	$\log \boldsymbol{n}$ high prob.	o randomized insertion o simple to implement
AVL and $(2,4)$ Tree	$\log \boldsymbol{n}$ worst-case	$\log \boldsymbol{n}$ worst-case	$\log \boldsymbol{n}$ worst-case	o complex to implement

Questions?

