
Binary Search Trees

6

92

41 8

<

>

=

1

Recall: Ordered Maps
Keys come from a total order
New operations:
n Each returns an iterator to an entry:

n firstEntry(): smallest key in the map
n lastEntry(): largest key in the map

n floorEntry(k): largest key £ k
n ceilingEntry(k): smallest key ³ k

n All return end if the map is empty

2

Binary Search
Binary search can perform operations get, floorEntry and ceilingEntry on an 
ordered map implemented by means of an array-based sequence, sorted by 
key
n similar to the high-low game
n at each step, the number of candidate items is halved
n terminates after O(log n) steps

Example: find(7)

3

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

l=m =h

Search Tables
A search table is an ordered map implemented by means of a 
sorted sequence
n We store the items in an array-based sequence, sorted by key
n We use an external comparator for the keys (for any arbitrary comparison)

Performance:
n get, floorEntry and ceilingEntry take O(log n) time, using 

binary search
n get takes O(n) time since in the worst case we have to shift 
n/2 items to make room for the new item

n erase take O(n) time since in the worst case we have to shift 
n/2 items to compact the items after the removal

4



Binary Search Trees
A binary search tree is a 
binary tree storing keys (or 
key-value entries) at its 
internal nodes and 
satisfying the following 
property:
n Let u, v, and w be three nodes 

such that u is in the left 
subtree of v and w is in the 
right subtree of v. We have 
key(u) £ key(v) £ key(w)

External nodes do not store 
items

An inorder traversal of a 
binary search trees visits the 
keys in increasing order

5

6

92

41 8

Search
To search for a key k, we trace a 
downward path starting at the 
root
The next node visited depends on 
the comparison of k with the key 
of the current node
If we reach a leaf, the key is not 
found
Example: get(4):
n Call TreeSearch(4,root)

The algorithms for floorEntry and 
ceilingEntry are similar

Recursive

6

Algorithm TreeSearch(k, v)
if v.isExternal ()

return v
if k < v.key()

return TreeSearch(k, v.left())
else if k = v.key()

return v
else { k > v.key() }

return TreeSearch(k, v.right())

6

92

41 8

<

>

=

Insertion
To perform operation put(k, o), 
we search for key k (using 
TreeSearch)

Assume k is not already in the 
tree, and let w be the leaf 
reached by the search

We insert k at node w and 
expand w into an internal node

7

6

92

41 8

6

92

41 8

5

<

>

>

w

w

Example: insert(5)
Deletion

To perform operation erase(k), 
we search for key k

Assume key k is in the tree, and 
let v be the node storing k

Basic method
n removeAboveExternal(w): 

removes w and its parent

If node v has a leaf child w, we 
remove v and w from the tree 
with removeAboveExternal(w)

What about “remove 1”?

8

6

92

41 8

5

v
w

6

92

51 8

<

>

Example: remove 4



Deletion (cont.)
Key k to be removed is stored at 
a node v whose children are both 
internal

1. Find the internal node w that 
follows v in an inorder traversal
(find the smallest w larger than v)
2. Copy key(w) into node v
3. Remove node w and its left 
child z (which must be a leaf) by 
means of operation 
removeExternal(z)
n Why left child z?

No other cases?
9

3

1

8

6 9

5

v

w

z

2

5

1

8

6 9

v

2

Example: remove 3
Performance

Consider an ordered map with n
items implemented by a binary 
search tree of height h
n Space: O(n)
n methods get, floorEntry, 

ceilingEntry, put and erase take 
O(h) time

The height h is O(n) in the worst 
case and O(log n) in the best case

Question: Can we find the 
algorithm with worst-case 
O(log n)
n Idea??? Balancing

10

AVL Trees

6

3 8

4

v

z

11

Adelson-Velskii, G.; E. M. Landis (1962). “"An algorithm for the organization of information"”. 
Proceedings of the USSR Academy of Sciences 146: 263–266. (Russian) English translation 
by Myron J. Ricci in Soviet Math. Doklady, 3:1259–1263, 1962.

AVL Tree Definition

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

An AVL Tree T is a binary search 
tree with the following property
n Height-Balance:

For every internal node v of T, the 
heights of the children of v can differ 
by at most 1

This tree seems to be well-balanced
n Height: O(log n)

12



Height of an AVL Tree (1)
Fact: The height of an AVL tree storing n keys is O(log n).
Proof
n n(h): the minimum number of internal nodes of an AVL tree of height h.
n Easily see that n(1) = 1 and n(2) = 2
n For h > 2, an AVL tree of height h and the minimum number of nodes 

contains (i) the root node, (ii) one AVL subtree of height h-1 and (iii) 
another AVL subtree of height h-2.

n That is, n(h) = 1 + n(h-1) + n(h-2)

Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So
n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), … (by induction),
n(h) > 2in(h-2i)

13

3

4 n(1)

n(2)

Height of an AVL Tree (2)
n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), … (by induction),

n(h) > 2in(h-2i) (for any integer i, such that h-2i ≥ 1)
We pick i so that h-2i = 1 or 2 (base case)

Then, we have

Taking logarithms: h < 2log n(h) +2
Thus, the height of an AVL tree is O(log n)

14

3

4 n(1)

n(2)

Insertion
Insertion is as in a binary search tree
Always done by expanding an external node.
Example of insertion 54. What’s the problem?

15

44

17 78

32 50 88

48 62

54

44

17 78

32 50 88

48 62

before insertion 54 after insertion 54

Rebalancing Needed
How should we do this?
n (1) Take some examples
n (2) Find difference cases
n (3) Make each sub-algorithm for each case
n (4) Make an entire algorithm
n (5) Run it with some inputs
n (6) Find out it is not working perfectly, and say

“What the hell is this?” “How should I do?” 

Lessons
n Let’s summarize them later

16



Rebalancing Example: Insertion of w=54

17

“Search-and-Repair” strategy
z: first node we encounter in going 
up from w toward the root such 
that z is unbalanced
y: the child of z with higher height 
(note that y must be an ancestor 
of w)
x: the child of y with higher height 
(there cannot be a tie and node x
must be an ancestor of w)

What are we doing for balancing?

Can we do this systematically?

What are other cases?

balanced

unbalanced
Please remember the notations! z, y, z

18

z: first node we encounter in going up from w toward the 
root such that z is unbalanced
n “w에서위로쭉올라가서, balance깨지는첫놈”

y: the child of z with higher height
n “그놈의자녀중키가큰놈”

x: the child of y with higher height
n “그키큰자녀의자녀(손주) 중키가큰놈”

Rename x,y,z as a,b,c so that a precedes b and b precedes c
in “inorder traversal”
n We can make many combinations 

4 Combinations

19

inorder: z,y,x inorder: x,y,z

inorder: z,x,y inorder: y,x,z

Restructuring (as Single Rotations)

T0
T1

T2
T3

c = x
b = y

a = z

T0 T1 T2
T3

c = x
b = y

a = z
single rotation

20

Single Rotations:

T3
T2

T1
T0

a = x
b = y

c = z

T0T1T2
T3

a = x
b = y

c = z
single rotation

Left rotation about z

Right rotation about z



Restructuring (as Double Rotations)

double rotationa = z

b = x
c = y

T0
T2

T1
T3 T0

T2
T3T1

a = z
b = x

c = y

21

double rotations:

double rotationc = z

b = x
a = y

T0
T2

T1
T3 T0

T2
T3 T1

c = z
b = x

a = y

Right rotation about y 
and left rotation about z

Left rotation about y 
and right rotation about z

Removal
Removal begins as in a binary search tree, which means the node 
removed (after copying the in-order successor) will become an 
empty external node. Its parent, w, may cause an imbalance.
Example: 

22

44

17

7832 50

8848

62

54

44

17

7850

8848

62

54

before deletion of 32 after deletion

Rebalancing after a Removal
Let z be the first unbalanced node encountered while travelling up the tree 
from w. Also, let y be the child of z with the larger height, and let x be the child 
of y with the larger height
We perform restructure(x) to restore balance at z

What happens if z is an internal node, not the root?
As this restructuring may upset the balance of another node higher in the tree, 
we must continue checking for balance until the root of T is reached

23

44

17

7850

8848

62

54

w

c=x

b=y

a=z

44

17

78

50 88

48

62

54

AVL Tree Performance
a single restructure takes O(1) time
n using a linked-structure binary tree

find takes O(log n) time
n height of tree is O(log n), no restructures needed

put takes O(log n) time
n initial find is O(log n)
n Restructuring up the tree, maintaining heights is O(log n)

erase takes O(log n) time
n initial find is O(log n)
n Restructuring up the tree, maintaining heights is O(log n)

24



Recall: Rebalancing Needed
How should we do this?
n (1) Take some examples
n (2) Find difference cases
n (3) Make each sub-algorithm for each case
n (4) Make an entire algorithm
n (5) Run it with some inputs
n (6) Find out it is not working perfectly, and say

“What the hell is this?” “How should I do?” 

Lessons
n Sometimes, we need to do case-by-case handling to complete the 

algorithm
n People often rely on ”Half-assed (대충) algorithm design first “ and 

“Complete it using example inputs”. Not recommended. 
w Same as “Roughly make the code, and debug it later”. Bad coding behavior

25

Questions?


