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Recall: Ordered Maps
Keys come from a total order
New operations:
n Each returns an iterator to an entry:

n firstEntry(): smallest key in the map
n lastEntry(): largest key in the map

n floorEntry(k): largest key £ k
n ceilingEntry(k): smallest key ³ k

n All return end if the map is empty
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Binary Search
Binary search can perform operations get, floorEntry and ceilingEntry on an 
ordered map implemented by means of an array-based sequence, sorted by 
key
n similar to the high-low game
n at each step, the number of candidate items is halved
n terminates after O(log n) steps

Example: find(7)
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Search Tables
A search table is an ordered map implemented by means of a 
sorted sequence
n We store the items in an array-based sequence, sorted by key
n We use an external comparator for the keys (for any arbitrary comparison)

Performance:
n get, floorEntry and ceilingEntry take O(log n) time, using 

binary search
n get takes O(n) time since in the worst case we have to shift 
n/2 items to make room for the new item

n erase take O(n) time since in the worst case we have to shift 
n/2 items to compact the items after the removal
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Binary Search Trees
A binary search tree is a 
binary tree storing keys (or 
key-value entries) at its 
internal nodes and 
satisfying the following 
property:
n Let u, v, and w be three nodes 

such that u is in the left 
subtree of v and w is in the 
right subtree of v. We have 
key(u) £ key(v) £ key(w)

External nodes do not store 
items

An inorder traversal of a 
binary search trees visits the 
keys in increasing order
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Search
To search for a key k, we trace a 
downward path starting at the 
root
The next node visited depends on 
the comparison of k with the key 
of the current node
If we reach a leaf, the key is not 
found
Example: get(4):
n Call TreeSearch(4,root)

The algorithms for floorEntry and 
ceilingEntry are similar

Recursive
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Algorithm TreeSearch(k, v)
if v.isExternal ()

return v
if k < v.key()

return TreeSearch(k, v.left())
else if k = v.key()

return v
else { k > v.key() }

return TreeSearch(k, v.right())
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Insertion
To perform operation put(k, o), 
we search for key k (using 
TreeSearch)

Assume k is not already in the 
tree, and let w be the leaf 
reached by the search

We insert k at node w and 
expand w into an internal node
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Example: insert(5)
Deletion

To perform operation erase(k), 
we search for key k

Assume key k is in the tree, and 
let v be the node storing k

Basic method
n removeAboveExternal(w): 

removes w and its parent

If node v has a leaf child w, we 
remove v and w from the tree 
with removeAboveExternal(w)

What about “remove 1”?
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Deletion (cont.)
Key k to be removed is stored at 
a node v whose children are both 
internal

1. Find the internal node w that 
follows v in an inorder traversal
(find the smallest w larger than v)
2. Copy key(w) into node v
3. Remove node w and its left 
child z (which must be a leaf) by 
means of operation 
removeExternal(z)
n Why left child z?

No other cases?
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Example: remove 3
Performance

Consider an ordered map with n
items implemented by a binary 
search tree of height h
n Space: O(n)
n methods get, floorEntry, 

ceilingEntry, put and erase take 
O(h) time

The height h is O(n) in the worst 
case and O(log n) in the best case

Question: Can we find the 
algorithm with worst-case 
O(log n)
n Idea??? Balancing
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AVL Trees
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Adelson-Velskii, G.; E. M. Landis (1962). “"An algorithm for the organization of information"”. 
Proceedings of the USSR Academy of Sciences 146: 263–266. (Russian) English translation 
by Myron J. Ricci in Soviet Math. Doklady, 3:1259–1263, 1962.

AVL Tree Definition
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An AVL Tree T is a binary search 
tree with the following property
n Height-Balance:

For every internal node v of T, the 
heights of the children of v can differ 
by at most 1

This tree seems to be well-balanced
n Height: O(log n)
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Height of an AVL Tree (1)
Fact: The height of an AVL tree storing n keys is O(log n).
Proof
n n(h): the minimum number of internal nodes of an AVL tree of height h.
n Easily see that n(1) = 1 and n(2) = 2
n For h > 2, an AVL tree of height h and the minimum number of nodes 

contains (i) the root node, (ii) one AVL subtree of height h-1 and (iii) 
another AVL subtree of height h-2.

n That is, n(h) = 1 + n(h-1) + n(h-2)

Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So
n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), … (by induction),
n(h) > 2in(h-2i)
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Height of an AVL Tree (2)
n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), … (by induction),

n(h) > 2in(h-2i) (for any integer i, such that h-2i ≥ 1)
We pick i so that h-2i = 1 or 2 (base case)

Then, we have

Taking logarithms: h < 2log n(h) +2
Thus, the height of an AVL tree is O(log n)
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Insertion
Insertion is as in a binary search tree
Always done by expanding an external node.
Example of insertion 54. What’s the problem?
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Rebalancing Needed
How should we do this?
n (1) Take some examples
n (2) Find difference cases
n (3) Make each sub-algorithm for each case
n (4) Make an entire algorithm
n (5) Run it with some inputs
n (6) Find out it is not working perfectly, and say

“What the hell is this?” “How should I do?” 

Lessons
n Let’s summarize them later
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Rebalancing Example: Insertion of w=54
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“Search-and-Repair” strategy
z: first node we encounter in going 
up from w toward the root such 
that z is unbalanced
y: the child of z with higher height 
(note that y must be an ancestor 
of w)
x: the child of y with higher height 
(there cannot be a tie and node x
must be an ancestor of w)

What are we doing for balancing?

Can we do this systematically?

What are other cases?

balanced

unbalanced
Please remember the notations! z, y, z
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z: first node we encounter in going up from w toward the 
root such that z is unbalanced
n “w에서위로쭉올라가서, balance깨지는첫놈”

y: the child of z with higher height
n “그놈의자녀중키가큰놈”

x: the child of y with higher height
n “그키큰자녀의자녀(손주) 중키가큰놈”

Rename x,y,z as a,b,c so that a precedes b and b precedes c
in “inorder traversal”
n We can make many combinations 

4 Combinations
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inorder: z,y,x inorder: x,y,z

inorder: z,x,y inorder: y,x,z

Restructuring (as Single Rotations)

T0
T1

T2
T3

c = x
b = y

a = z

T0 T1 T2
T3

c = x
b = y

a = z
single rotation
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Single Rotations:

T3
T2

T1
T0

a = x
b = y

c = z

T0T1T2
T3

a = x
b = y

c = z
single rotation

Left rotation about z

Right rotation about z



Restructuring (as Double Rotations)

double rotationa = z

b = x
c = y

T0
T2

T1
T3 T0

T2
T3T1

a = z
b = x

c = y
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double rotations:

double rotationc = z

b = x
a = y

T0
T2

T1
T3 T0

T2
T3 T1

c = z
b = x

a = y

Right rotation about y 
and left rotation about z

Left rotation about y 
and right rotation about z

Removal
Removal begins as in a binary search tree, which means the node 
removed (after copying the in-order successor) will become an 
empty external node. Its parent, w, may cause an imbalance.
Example: 
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Rebalancing after a Removal
Let z be the first unbalanced node encountered while travelling up the tree 
from w. Also, let y be the child of z with the larger height, and let x be the child 
of y with the larger height
We perform restructure(x) to restore balance at z

What happens if z is an internal node, not the root?
As this restructuring may upset the balance of another node higher in the tree, 
we must continue checking for balance until the root of T is reached
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AVL Tree Performance
a single restructure takes O(1) time
n using a linked-structure binary tree

find takes O(log n) time
n height of tree is O(log n), no restructures needed

put takes O(log n) time
n initial find is O(log n)
n Restructuring up the tree, maintaining heights is O(log n)

erase takes O(log n) time
n initial find is O(log n)
n Restructuring up the tree, maintaining heights is O(log n)
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Recall: Rebalancing Needed
How should we do this?
n (1) Take some examples
n (2) Find difference cases
n (3) Make each sub-algorithm for each case
n (4) Make an entire algorithm
n (5) Run it with some inputs
n (6) Find out it is not working perfectly, and say

“What the hell is this?” “How should I do?” 

Lessons
n Sometimes, we need to do case-by-case handling to complete the 

algorithm
n People often rely on ”Half-assed (대충) algorithm design first “ and 

“Complete it using example inputs”. Not recommended. 
w Same as “Roughly make the code, and debug it later”. Bad coding behavior
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Questions?


