Binary Search Trees

Binary Search

@ Binary search can perform operations get, floorEntry and ceilingEntry on an
ordered map implemented by means of an array-based sequence, sorted by
key

= similar to the high-low game
= at each step, the number of candidate items is halved
= terminates after O(log n) steps

@ Example: find(7)

0,

l

© -~

D0 ©
@ @ @3

@ @ -

©,
© ©,
)
@ ©,
)

3
3
®

ONG

© © © ©
® ©® ©® ©
® ® ® &
® ® @ &
® ©® @ &

G
3
-0

I=m =h

Recall: Ordered Maps

@ Keys come from a total order
@ New operations:
m Each returns an iterator to an entry:

firstEntry(): smallest key in the map

lastEntry(): largest key in the map

floorEntry(k): largest key < k

ceilingEntry(k): smallest key > k

m All return end if the map is empty

Search Tables S

@ A search table is an ordered map implemented by means of a
sorted sequence
m We store the items in an array-based sequence, sorted by key
= We use an external comparator for the keys (for any arbitrary comparison)

@ Performance:
n get, floorEntry and ceilingEntry take O(log n) time, using
binary search
m get takes O(n) time since in the worst case we have to shift
n/2 items to make room for the new item

m erase take O(n) time since in the worst case we have to shift
n/2 items to compact the items after the removal

Binary Search Trees Search

@ A binary search tree is a @ Aninorder traversal of a @ To search for a key k, we trace a
binary tree storing keys (or binary search trees visits the downward path starting at the Algorifhm TreeSearch(k, v)
key-value entries) at its keys in increasing order root if v.isExternal ()
internal nodes and @ The next node visited depends on _ returny
satisfying the following the comparison of k with the key if k <v.key()
property: of the current node re.turn TreeSearch(k, v.left())
. else if & = v.key()

m Letu, v, and w be three nodes @ If we reach a leaf, the key is not IR

such that # is in thg Igft found else | /i vkey() |

iiugi'irss b(;l::eags vv'v\;;;nh';lez @ Example: get(4): return TreeSearch(k, v.right())

m Call TreeSearch(4,root)

@ The algorithms for floorEntry and
ceilingEntry are similar

key(u) < key(v) < key(w)

External nodes do not store
items @

Recursive

Insertion Deletion

Example: insert(5) @ To perform operation erase(k), Example: remove 4

we search for key &k

@ To perform operation put(k, o),
we search for key k (using
TreeSearch)

@ Assume key k is in the tree, and
@ Assume k is not already in the let v be the node storing k
tree, and let w be the leaf

reached by the search

4 Basic method

= removeAboveExternal(w):
removes w and its parent

@ Weinsert k at node w and
expand w into an internal node

@ [f node v has a leaf child w, we
remove v and w from the tree
with removeAboveExternal(w)

49 What about “remove 1”?

Deletion (cont.)

@ Key k to be removed is stored at
a node v whose children are both
internal

@ 1. Find the internal node w that
follows v in an inorder traversal
(find the smallest w larger than v)

@ 2. Copy key(w) into node v

@ 3. Remove node w and its left
child z (which must be a leaf) by
means of operation
removeExternal(z)

= Why left child z?

@ No other cases?

Example: remove 3

AVL Trees

Adelson-Velskii, G.; E. M. Landis (1962). “"An algorithm for the organization of information".
Proceedings of the USSR Academy of Sciences 146: 263—266. (Russian) English translation

by Myron J. Ricci in Soviet Math. Doklady, 3:1259-1263, 1962.

11

Performance

@ Consider an ordered map with n
items implemented by a binary
search tree of height &

= Space: O(n)
= methods get, floorEntry,

ceilingEntry, put and erase take
O(h) time

@ The height & is O(n) in the worst
case and O(log n) in the best case

@ Question: Can we find the
algorithm with worst-case
O(log n)

= Idea??? Balancing

AVL Tree Definition

10

@ An AVL Tree Tis a binary search
tree with the following property

m Height-Balance:
For every internal node v of T, the

heights of the children of v can differ
by at most 1

@ This tree seems to be well-balanced
m Height: O(log n)

12

Height of an AVL Tree (1)

@ Fact: The height of an AVL tree storing n keys is O(log n).
@ Proof

= n(h): the minimum number of internal nodes of an AVL tree of height h.

m Easily seethatn(1)=1andn(2)=2

m For h> 2, an AVL tree of height h and the minimum number of nodes
contains (i) the root node, (ii) one AVL subtree of height h-1 and (iii)
another AVL subtree of height h-2.

m Thatis, n(h) =1+ n(h-1) + n(h-2)

@ Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So
n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), ... (by induction),
n(h) > 2in(h-2i) »

13

Insertion

@ Insertion is as in a binary search tree
@ Always done by expanding an external node.
@ Example of insertion 54. What’s the problem?

before insertion 54 after insertion 54

15

Height of an AVL Tree (2)

@ n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), ... (by induction),
n(h) > 2in(h-2i) (for any integer i, such that h-2i > 1)
@ We pick i so that h-2i = 1 or 2 (base case)

-f
@ Then, we have i > 2[,211_1%(}!_2%" +2>

231-1n(1)
2571,

vV v

@ Taking logarithms: h < 2log n(h) +2
@ Thus, the height of an AVL tree is O(log n)

Rebalancing Needed

@®How should we do this? A
m (1) Take some examples &
m (2) Find difference cases
= (3) Make each sub-algorithm for each case
= (4) Make an entire algorithm
m
m

5) Run it with some inputs

6) Find out it is not working perfectly, and say
“What the hell is this?” “How should | do?”

@ Lessons
m Let’s summarize them later

16

Rebalancing Example: Insertion of w=54 Please remember the notations! z, vy, z

@ “Search-and-Repair” strategy 5 unbalanced @ z: first node we encounter in going up from w toward the
root such that z is unbalanced

@ z: first node we encounter in going
n “‘WOA RIE & 2271, balancef K| = A =

up from w toward the root such
that z is unbalanced

@ y: the child of z with higher height
(note that y must be an ancestor
of w)

@ x: the child of y with higher height
(there cannot be a tie and node x
must be an ancestor of w)

@ y: the child of z with higher height
A9 XE TSI E 5

@ x: the child of y with higher height
« 7| 2 RO (A=) 7|7} 2 =~
@ What are we doing for balancing? - | FEel JHAEF) S 717

@ Rename x,y,z as a,b,c so that a precedes b and b precedes ¢
in “inorder traversal”

» We can make many combinations

@ Can we do this systematically?

4 What are other cases?

balanced Ty T T3

4 Combinations Restructuring (as Single Rotations)

inorder: z,y,Xx | inorder: x,y,z @ Single Rotations:

Restructuring (as Double Rotations)

@ double rotations:

21

Rebalancing after a Removal

@ Let z be the first unbalanced node encountered while travelling up the tree
from w. Also, let y be the child of z with the larger height, and let x be the child
of y with the larger height

@ We perform restructure(x) to restore balance at z

@ What happens if z is an internal node, not the root?

@ As this restructuring may upset the balance of another node higher in the tree,
we must continue checking for balance until the root of T is reached

23

Removal

@ Removal begins as in a binary search tree, which means the node
removed (after copying the in-order successor) will become an
empty external node. Its parent, w, may cause an imbalance.

@ Example:

before deletion of 32 after deletion

22

AVL Tree Performance

@ asingle restructure takes O(1) time

m using a linked-structure binary tree
@ find takes O(log n) time

m height of tree is O(log n), no restructures needed
@ put takes O(log n) time

m initial find is O(log n)

m Restructuring up the tree, maintaining heights is O(log n)

@ erase takes O(log n) time
m initial find is O(log n)
m Restructuring up the tree, maintaining heights is O(log n)

24

Recall: Rebalancing Needed

® How should we do this?

(1) Take some examples E
(2) Find difference cases

(3) Make each sub-algorithm for each case

(4) Make an entire algorithm

(5) Run it with some inputs

(6) Find out it is not working perfectly, and say I n ?
“What the hell is this?” “How should | do?” -

@ Lessons
m Sometimes, we need to do case-by-case handling to complete the
algorithm

» People often rely on “Half-assed (CH %) algorithm design first “ and
“Complete it using example inputs”. Not recommended.

+ Same as “Roughly make the code, and debug it later”. Bad coding behavior

25

