Binary Search Trees

Recall: Ordered Maps

Keys come from a total order
New operations:

- Each returns an iterator to an entry:
- firstEntry(): smallest key in the map
- lastEntry(): largest key in the map
- floorEntry(k): largest key $\leq \mathrm{k}$
- ceilingEntry(k): smallest key $\geq k$
- All return end if the map is empty

Binary Search

* Binary search can perform operations get, floorEntry and ceilingEntry on an ordered map implemented by means of an array-based sequence, sorted by key
- similar to the high-low game
- at each step, the number of candidate items is halved
- terminates after $O(\log n)$ steps
* Example: find(7)

Search Tables

\leqslant A search table is an ordered map implemented by means of a sorted sequence

- We store the items in an array-based sequence, sorted by key
- We use an external comparator for the keys (for any arbitrary comparison)

Performance:

- get, floorEntry and ceilingEntry take $\boldsymbol{O}(\log \boldsymbol{n})$ time, using binary search
- get takes $\boldsymbol{O}(\boldsymbol{n})$ time since in the worst case we have to shift $n / 2$ items to make room for the new item
- erase take $\boldsymbol{O}(\boldsymbol{n})$ time since in the worst case we have to shift $n / 2$ items to compact the items after the removal

Binary Search Trees

A binary search tree is a binary tree storing keys (or key-value entries) at its internal nodes and satisfying the following property:

- Let $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{w} be three nodes such that \boldsymbol{u} is in the left subtree of \boldsymbol{v} and \boldsymbol{w} is in the right subtree of \boldsymbol{v}. We have $k e y(u) \leq k e y(v) \leq k e y(w)$

External nodes do not store items

* An inorder traversal of a binary search trees visits the keys in increasing order

Search

- To search for a key \boldsymbol{k}, we trace a downward path starting at the root
- The next node visited depends on the comparison of \boldsymbol{k} with the key of the current node
- If we reach a leaf, the key is not found
- Example: get(4):
- Call TreeSearch(4,root)
* The algorithms for floorEntry and ceilingEntry are similar

Recursive

Algorithm TreeSearch (k, v)
if voisExternal ()

return v

if $k<v_{0} k e y()$
return TreeSearch(\boldsymbol{k}, v_{0} left())
else if $k=v_{0} k e y()$
return v
else $\left\{\boldsymbol{k}>\boldsymbol{v}_{\mathrm{o}} \operatorname{key}()\right\}$
return TreeSearch(k, v.right())

Insertion

- To perform operation put(k, o), we search for key k (using TreeSearch)
- Assume k is not already in the tree, and let w be the leaf reached by the search

Example: insert(5)

- We insert k at node w and expand w into an internal node

Deletion

- To perform operation erase (\boldsymbol{k}), we search for key \boldsymbol{k}
- Assume key k is in the tree, and let \boldsymbol{v} be the node storing \boldsymbol{k}
- Basic method
- removeAboveExternal(w): removes w and its parent

If node \boldsymbol{v} has a leaf child \boldsymbol{w}, we remove \boldsymbol{v} and \boldsymbol{w} from the tree with removeAboveExternal(w)

What about "remove 1"?

Example: remove 4

Deletion (cont.)

* Key \boldsymbol{k} to be removed is stored at a node \boldsymbol{v} whose children are both internal
* 1. Find the internal node w that follows \boldsymbol{v} in an inorder traversal (find the smallest w larger than v)
* 2. Copy $\boldsymbol{k e y}(\boldsymbol{w})$ into node \boldsymbol{v}
* 3. Remove node \boldsymbol{w} and its left child z (which must be a leaf) by means of operation removeExternal(z)
- Why left child z ?

No other cases?

Example: remove 3

Performance

- Consider an ordered map with \boldsymbol{n} items implemented by a binary search tree of height \boldsymbol{h}
- Space: $\boldsymbol{O}(\boldsymbol{n})$
- methods get, floorEntry, ceilingEntry, put and erase take $\boldsymbol{O}(\boldsymbol{h})$ time

* The height \boldsymbol{h} is $\boldsymbol{O}(\boldsymbol{n})$ in the worst case and $\boldsymbol{O}(\log \boldsymbol{n})$ in the best case
* Question: Can we find the algorithm with worst-case $O(\log n)$
- Idea??? Balancing

AVL Trees

Adelson-Velskii, G.; E. M. Landis (1962). "An algorithm for the organization of information"". Proceedings of the USSR Academy of Sciences 146: 263-266. (Russian) English translation by Myron J. Ricci in Soviet Math. Doklady, 3:1259-1263, 1962.

AVL Tree Definition

- An AVL Tree T is a binary search tree with the following property

- Height-Balance:

For every internal node v of T, the heights of the children of v can differ by at most 1

This tree seems to be well-balanced

- Height: O(log n)

Height of an AVL Tree (1)

Fact: The height of an AVL tree storing n keys is $O(\log n)$.

Proof

- $n(h)$: the minimum number of internal nodes of an AVL tree of height h.
- Easily see that $n(1)=1$ and $n(2)=2$
- For $h>2$, an AVL tree of height h and the minimum number of nodes contains (i) the root node, (ii) one AVL subtree of height $h-1$ and (iii) another AVL subtree of height $h-2$.
- That is, $n(h)=1+n(h-1)+n(h-2)$

Knowing $n(h-1)>n(h-2)$, we get $n(h)>2 n(h-2)$. So

$$
\begin{aligned}
& n(h)>2 n(h-2), n(h)>4 n(h-4), n(h)>8 n(n-6), \ldots(\text { by induction }), \\
& n(h)>2^{i} n(h-2 i)
\end{aligned}
$$

Height of an AVL Tree (2)

$n(h)>2 n(h-2), n(h)>4 n(h-4), n(h)>8 n(n-6), \ldots$ (by induction),
$n(h)>2^{i} n(h-2 i)$ (for any integer i, such that $\left.h-2 i \geq 1\right)$
We pick i so that $h-2 i=1$ or 2 (base case)

$$
i=\left\lceil\frac{h}{2}\right\rceil-1 .
$$

Then, we have

$$
\begin{aligned}
n(h) & >2^{\left\lceil\frac{h}{2}\right\rceil-1} \cdot n\left(h-2\left\lceil\frac{h}{2}\right\rceil+2\right) \\
& \geq 2^{\left\lceil\frac{h}{2}\right\rceil-1} n(1) \\
& \geq 2^{\frac{h}{2}-1} .
\end{aligned}
$$

Taking logarithms: $h<2 \log n(h)+2$
Thus, the height of an AVL tree is $O(\log n)$

Insertion

Insertion is as in a binary search tree

* Always done by expanding an external node.
* Example of insertion 54. What's the problem?

before insertion 54

after insertion 54

Rebalancing Needed

How should we do this?

- (1) Take some examples
- (2) Find difference cases
- (3) Make each sub-algorithm for each case
- (4) Make an entire algorithm
- (5) Run it with some inputs
- (6) Find out it is not working perfectly, and say "What the hell is this?" "How should I do?"

- Lessons

- Let's summarize them later

Rebalancing Example: Insertion of w=54

- "Search-and-Repair" strategy
- z: first node we encounter in going up from w toward the root such that z is unbalanced
- y : the child of z with higher height (note that \boldsymbol{y} must be an ancestor of w)
* x : the child of y with higher height (there cannot be a tie and node \boldsymbol{x} must be an ancestor of \boldsymbol{w})

What are we doing for balancing?
Can we do this systematically?

- What are other cases?

Please remember the notations! z, y, z

z: first node we encounter in going up from w toward the root such that \boldsymbol{z} is unbalanced

- "w에서 위로 쭉 올라가서, balance깨지는 첫 놈"
* y : the child of z with higher height
-"그 놈의 자녀 중 키가 큰 놈"
\boldsymbol{x} : the child of \boldsymbol{y} with higher height
- "그 키 큰 자녀의 자녀(손주) 중 키가 큰 놈"
* Rename $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ as $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ so that \boldsymbol{a} precedes \boldsymbol{b} and \boldsymbol{b} precedes \boldsymbol{c} in "inorder traversal"
- We can make many combinations

4 Combinations

Restructuring (as Single Rotations)

- Single Rotations:

Restructuring (as Double Rotations)

* double rotations:

Removal

- Removal begins as in a binary search tree, which means the node removed (after copying the in-order successor) will become an empty external node. Its parent, w, may cause an imbalance.
Example:

before deletion of 32
after deletion

Rebalancing after a Removal

* Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height
* We perform restructure(x) to restore balance at z

* What happens if z is an internal node, not the root?
* As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached

AVL Tree Performance

a single restructure takes $\mathrm{O}(1)$ time

- using a linked-structure binary tree
find takes $\mathrm{O}(\log n)$ time

- height of tree is $\mathrm{O}(\log \mathrm{n})$, no restructures needed
put takes $\mathrm{O}(\log n)$ time
- initial find is $\mathrm{O}(\log n)$
- Restructuring up the tree, maintaining heights is $\mathrm{O}(\log n)$
erase takes $\mathrm{O}(\log \mathrm{n})$ time
- initial find is $\mathrm{O}(\log n)$
- Restructuring up the tree, maintaining heights is $\mathrm{O}(\log n)$

Recall: Rebalancing Needed

How should we do this?

- (1) Take some examples
- (2) Find difference cases
- (3) Make each sub-algorithm for each case
- (4) Make an entire algorithm
- (5) Run it with some inputs
- (6) Find out it is not working perfectly, and say
"What the hell is this?" "How should I do?"

Lessons

- Sometimes, we need to do case-by-case handling to complete the algorithm
- People often rely on "Half-assed (대충) algorithm design first " and "Complete it using example inputs". Not recommended.
- Same as "Roughly make the code, and debug it later". Bad coding behavior

Questions?

