

Example (adjacent states)

Data Structures Definitions

- Ways to organize and store data
 - Data Storages
- Ways to access and manipulate the stored data.
 - Methods to access storages

Problem

- Definition: *adjacency:* if two states share a boundary, the two states are *adjacent*.
- Given a state X, print a state Z that is not adjacent to X, but is adjacent to a state Y adjacent to X.
 - ✓ for example,
 - Input: North Carolina
 - Output: Florida

3

Come up with Data Structures

- Suppose you have only the following information
 - $\checkmark\,$ for each state x, the list of states that are adjacent to state x.
 - ✓ for example,
 - North Carolina : Georgia, south Carolina, Virginia, Tennessee.
- How are you going to store this adjacency information to solve the problem efficiently?

Lessons

- Different data structures lead to different ways to solve a given problem. (algorithms).
- Different algorithms may give different efficiency (space and time).

Course outline

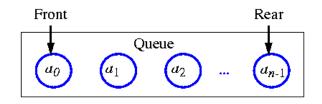

- First Topic: How to measure the efficiency of an algorithm.
 - Each data structure has a different use and application. So we will also study....
 - Applications (problems), algorithms.
 - Their efficiency.

Course outline

- Data Structures
 - ✓ Arrays
 - ✓ Stacks, Queues
 - 🗸 List
 - Priority queues
 - ✓ Search Trees
 - ✓ Graphs
 - ✓ etc ...

Stack

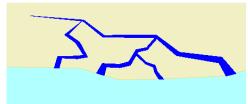
- A container of objects that are inserted and removed according to the last-in-first-out (LIFO) principle.
- Only the last (the most recently inserted) object can be removed.



List

- A collection of linearly arranged element (a linear order).
- Provides methods for accessing, inserting, and removing arbitrary elements.
- Notion of position, before and after.
 - Stacks and queues are a restricted form of a sequence.
 - Example,
 - ✓ A,B,C,D,E,F
 - ✓ a_1, a_2, a_3,...

Queue


- Differs from a stack in that its insertion and removal follows the first-in-first-out (FIFO) principle.
- The element which has been in the queue the longest may be removed.

10

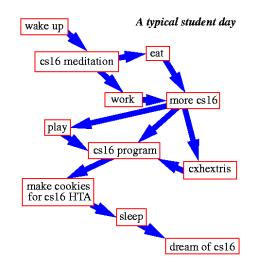
Tree

- A collection of objects arranged in a hierarchical fashion.
- E.g., organization of a corporation, a table of content, dos/unix file systems, family tree.
- Notion of parents and children, root and leaves.

Priority queue

- An abstract type for storing a collection of prioritized elements that supports arbitrary element insertion but support removal of elements only in order of priority.
- Examples.....

Graphs


• Representing a way of connections or relationships between pairs of objects.

13

Graphs

• Not only physical connectivity, but also logical relationship.

Algorithms and Applications

- Every computer software uses some collections of data structures.
- We will study algorithms to efficiently solve problems using various data structures.
- Proof techniques for correctness or efficiency.

Questions?