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Utility-Optimal Multi-Pattern Reuse in
Multi-Cell Networks

Kyuho Son, Member, IEEE, Yung Yi, Member, IEEE, and Song Chong, Member, IEEE

Abstract—Achieving sufficient spatial capacity gain through
the use of small cells requires careful consideration of inter-
cell interference (ICI) management via BS power coordination
coupled with user scheduling inside cells. Optimal algorithms are
known to be difficult to implement due to high computation and
signaling overhead. This study proposes joint pattern-based ICI
management and user scheduling algorithms that are practically
implementable. The key idea is to decompose the original
problem into two sub-problems in which ICI management is
run at a slower time scale than user scheduling. We empirically
show that even with such a slow tracking of system dynamics
at the ICI management part, the decomposed approach achieves
a considerable performance increase compared to conventional
universal reuse schemes.

Index Terms—Inter-cell interference (ICI), multi-pattern reuse,
ICI management, user scheduling, time-scale decomposed algo-
rithm, multi-cell network, network utility maximization (NUM).

I. INTRODUCTION

TO achieve high spatial capacity, wireless cellular net-
works consider a dense deployment of base stations

(BSs) that cover small cells. As a consequence, inter-cell inter-
ference (ICI) from neighboring BSs becomes a major source
of performance degradation, and the portion of users whose
capacity is limited by ICI grows. To attain the full potential
gain of multi-cell networks, coordinating the transmissions
among BSs to manage ICI effectively is essential. The key
intuition of BS coordination is that the achievable rates, which
depend on the amount of ICI, can be increased by adaptively
turning off some of the neighboring BSs. Thus, there are
cases in which the increment of achievable rates preponderates
the sacrifice of taking away transmission opportunities at
neighboring BSs. In particular, this effect of ICI management
is very apparent for users at the edges of cells.

A brute-force approach for mitigating ICI involves the use
of a system-wide reuse scheme in the time and/or frequency
domain. However, this may waste precious radio resources
because users at different geographical locations inside cells
prefer different reuse schemes. Several schemes, e.g., frac-
tional frequency reuse (FFR) [1] in Mobile WiMAX, have
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been proposed to accommodate users in different channel
conditions with different reuse factors. However, these a-priori
hand-crafted schemes are still far from optimal in the sense
that they do not adapt to dynamic network environments, e.g.,
time-varying user loads/locations. In addition, user scheduling
working opportunistically based on perceived time-varying
channels must be considered in conjunction with ICI man-
agement to achieve a high performance gain.

This paper (1) investigates the coupling dynamics of inter-
cell ICI management and intra-cell user scheduling and (2)
proposes practically implementable joint ICI management and
user scheduling algorithms in multi-cell networks. To that
end, a pattern-based joint optimal algorithm that tracks time-
varying channel conditions is initially proposed, where ‘pat-
tern’ corresponds to a combination of BS ON/OFF activities.
It is then demonstrated that the proposed optimal algorithm
is difficult to implement due to its high complexity. The key
bottleneck lies in the ICI management part, which requires
collecting excessive amount of feedback information from all
users and also needs complex operations to make decisions
on BS coordination at every time slot. To overcome such
complexity, the original optimization problem is decomposed
into two sub-problems (user scheduling and pattern-based
ICI management) and these are solved them with different
time scales. The complexity becomes much lower than that
of the optimal algorithm, yet sustains high efficiency in ICI
management.

The algorithm based on time-scale decomposition stems
from a design rationale in which ICI management may not
have to track fast dynamics, e.g., a fast fading channel
condition. Instead, it may suffice to run the ICI management
scheme following only macroscopic network changes, e.g.,
user loads/locations, and their average channel conditions.
In spite of such slow tracking of system dynamics in ICI
management, with the proposed decomposed algorithms, it is
empirically shown that the performance increase amounts to
about 6∼20% (compared to a conventional universal reuse
scheme), corresponding to 1/2∼2/3 of the optimal algorithm
(which is practically impossible to implement).

Research pertaining to mitigating ICI has recently received
much attention [2]–[7]. Optimal binary power control (BPC)
for sum rate maximization was considered in [2]. In other
studies [3], [4], optimal joint ICI management (similar BPC)
and user scheduling algorithms that operate in a slot-by-
slot manner and require heavy computation overhead were
considered. The authors there presented the idea of using
clustering only with neighboring BSs [3] or considering only
neighboring BSs [4] to reduce complexity. However, these
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schemes continue to require centralized coordination and/or
complex operations on a per-slot basis, which hinders practical
implementation.

Several recent approaches [6], [7] have attempted to make
algorithms practical based on a slightly different time-scale
separation approach from that used in the this paper. In
one recent study [6], the authors abstract users that share
similar traffic loads and channel environments into classes
and perform ICI management on a very long time scale
(e.g., hours) without explicit consideration of intra-cell user
scheduling. They basically design an ICI management scheme
that tracks system dynamics at a highly macroscopic level.
Our approach differs from the aforementioned scheme [6]
in that user scheduling is explicitly considered. Moreover,
our ICI management runs much faster (e.g., in the order
of seconds) compared to the earlier work [6]. The work
with a time-scale separation similar to ours was recently
proposed in [7] for different systems, i.e., OFDMA systems,
where the transmit power level for different subbands for ICI
management is periodically updated. Due to the differences
in the system model, a different mechanism is used here that
updates patterns and not powers, leading to a different style
for the algorithms and analysis. Additionally, the performance
gap between optimal and decomposed algorithms is studied in
this paper.

Related work also includes an examination of the potential
capacity gains (from the perspective of the flow-level per-
formance) by BS coordination [8]. Another important issue
in multi-cell networks is to resolve load imbalance problem
between cells. Several investigations [9], [10] explicitly bal-
ance the load by changing user associations from the BS
in hot-spot cells to an adjacent BS that is less crowded.
Sang et al. [9] proposed an integrated framework consisting
of a MAC-layer cell breathing technique and load-aware
handover/cell-site selection to deal with load balancing. Bu et
al. [10] were the first to consider the formulation of network-
wide proportional fairness (PF) [11] rigorously in a multi-
cell network where associations between users and BSs are
decision variables. Although it is assumed in this paper that
user association is fixed, we later argue and empirically show
that ICI management can implicitly resolve the load imbalance.
Moreover, it is shown that any performance gain by controlling
user associations may not be significant.

The remainder of this paper is organized as follows. Section
II formally describes our system model and presents a defi-
nition of the problem. Section III introduces a joint optimal
pattern selection and user scheduling algorithm to solve this
problem and discuss its implementation difficulties. In order to
take into account practical concerns, two algorithms (pattern
portion change algorithm and user scheduling algorithm) using
time-scale decomposition schemes that run at different time-
scales are designed in Section IV. Section V includes a
demonstration of the performance of proposed algorithms, and
the paper is concluded with Section VI.

II. SYSTEM MODEL AND PROBLEM DEFINITION

A. Network Model

We consider a wireless cellular network consisting of mul-
tiple cells. Denote by 𝒩 .

= {1, . . . , 𝑁} and 𝒦 .
= {1, . . . ,𝐾}

a set of BSs and MSs (or users), respectively. A user 𝑘 ∈ 𝒦
is associated with a single BS 𝑛 ∈ 𝒩 , which means that data
intended for the user 𝑘 is served only by the BS 𝑛. Define
𝑎(⋅) : 𝒦 → 𝒩 to be the association function, e.g., 𝑎(𝑘) = 𝑛
if the user 𝑘 is associated with the BS 𝑛. We further denote
by 𝒦𝑛 the set of users associated with the BS 𝑛.

We assume that a BS transmits data with either its given
maximum power or 0, which we simply denote by ‘ON’ or
‘OFF’ states1. We assume that a same frequency band (or
channel in short) with bandwidth 𝑊 in all cells, and con-
sider only downlink transmissions in the time-slotted system
indexed by 𝑡 = 0, 1, . . .. At each slot, a BS can select only
one user for its data transmission. Channels may be time-
varying, modeled by some stationary, ergodic random process
with the finite state index set ℐ and the stationary distribution
𝜽 = (𝜃(𝑖), 𝑖 ∈ ℐ).

B. Network Resource and Allocation Schemes

The time-varying network resources at slot 𝑡 are represented
by a finite set ℛ(𝑡) of the 𝐾-dimensional feasible rate
(bits/slot) vectors over users. A resource allocation scheme
then chooses a feasible rate vector in ℛ(𝑡) at each slot and
serves a subset of users with the chosen rate vector. A feasible
rate vector in ℛ(𝑡) is determined by the following two factors:
(i) which BSs are activated and (ii) which users are selected
in cells for data transmission.

To formally discuss (i), we define reuse pattern (or simply
pattern) 𝑝 to be a combination of ON/OFF activities of BSs,
which determines inter-cell interference to the corresponding
scheduled users in cells. Denote by 𝒫 the set of all patterns.
A pattern 𝑝 is said to activate a BS 𝑛, if the activity of the
BS 𝑛 is ON under pattern 𝑝. Denote by 𝒩𝑝 ⊂ 𝒩 the set of
all BSs activated by the pattern 𝑝. In parallel, we denote by
𝒫𝑛 ⊂ 𝒫 the set of patterns that activate the BS 𝑛. Define reuse
factor of a pattern 𝑝 to be 𝜒𝑝

.
=

∣𝒩𝑝∣
𝑁 ≤ 1, i.e., the ratio of the

number of BSs which use a pattern 𝑝 to the total number of
BSs. Denote by 𝑋𝑝(𝑡) the pattern selection indicator for the
pattern 𝑝, i.e., 𝑋𝑝(𝑡) = 1 when the pattern 𝑝 is used at slot 𝑡,
and 0 otherwise. Then, since only one pattern is used per one
slot, we should have: ∑

𝑝∈𝒫
𝑋𝑝(𝑡) = 1. (1)

In regard to (ii), define user scheduling indicator at slot 𝑡
by 𝐼𝑘(𝑡), i.e., 𝐼𝑘(𝑡) = 1, when the user 𝑘 is scheduled in its
associating cell, and 0 otherwise. Reflecting the constraint that
only one user can be selected in each cell, we should have:

∑
𝑘∈𝒦𝑛

𝐼𝑘(𝑡)

{
≤ 1, if 𝑋𝑝(𝑡) = 1 and 𝑛 ∈ 𝒩𝑝 ,
= 0, otherwise.

(2)

Then, a resource allocation scheme incorporates pattern
selection and user scheduling that can be regarded as choosing
a sequence of

{
(𝑋𝑝(𝑡) : 𝑝 ∈ 𝒫), (𝐼𝑘(𝑡) : 𝑘 ∈ 𝒦)}∞

𝑡=0
satisfying the constraints (1) and (2).

We now define the transmission rates of users provided
by a resource allocation scheme, depending on the choice of

1All discussions in this paper can be readily extended to the case of a
finite number of discrete power levels.
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patterns. Let 𝐺𝑛,𝑘(𝑡) represent the time-varying channel gain
from BS 𝑛 to user 𝑘 at slot 𝑡. The channel gain may take
into account path loss, log-normal shadowing, fast fading and
etc. The received SINR for user 𝑘 at slot 𝑡 when pattern 𝑝 is
selected and user 𝑘 is served by its serving BS, can be written
as:

Γ𝑘𝑝(𝑡)=

{
𝐺𝑎(𝑘),𝑘(𝑡)𝑃

𝑚𝑎𝑥
𝑛

𝑁0𝑊 +
∑

𝑚∈𝒩𝑝,𝑚∕=𝑎(𝑘) 𝐺𝑚,𝑘(𝑡)𝑃𝑚𝑎𝑥
𝑚

, if 𝑎(𝑘) ∈ 𝒩𝑝,

0, otherwise,

where 𝑃𝑚𝑎𝑥
𝑛 is the maximum transmit power of BS 𝑛 and 𝑁0

is the noise spectral density. Following the Shannon’s formula,
the data rate for user 𝑘 on reuse pattern 𝑝 at slot 𝑡 is given
by:

𝑟𝑘𝑝(𝑡) = 𝑊 log2 (1 + Γ𝑘𝑝(𝑡)) .

Note that 𝑟𝑘𝑝(𝑡) = 0 for all 𝑎(𝑘) /∈ 𝒩𝑝, i.e., user 𝑘 cannot
receive any data rate if its serving BS 𝑎(𝑘) is not activated
by the pattern 𝑝. Also notice that 𝑟𝑘𝑝(𝑡) is the potential data
rate when the user 𝑘 is scheduled, i.e., its actual data rate
may become 0, when other user, say 𝑘′, associated with the
BS 𝑎(𝑘), is scheduled for service. We assume that each BS 𝑛
knows instantaneous achievable data rates for all its associated
users through channel feedbacks. We further assume that BSs
have infinite amount of data to be destined to users.

C. General Problem Statement

In this paper, we aim at proposing the joint pattern selection
and user scheduling that maximizes the long-term network-
wide utility whenever possible, i.e., solves the following
optimization problem Q:

Q: max 𝑈 =
∑
𝑛∈𝒩

𝑈 (𝑛) =
∑
𝑘∈𝒦

𝑈𝑘(�̄�𝑘)

subject to R̄ ∈ ℛ,

where R̄ = (�̄�𝑘, 𝑘 ∈ 𝒦) is the vector of long-term
user throughputs. The network-wide utility 𝑈 is just the
summation of utilities of all BSs (𝑈 (𝑛), 𝑛 ∈ 𝒩 ); 𝑈 (𝑛) is
again the summation of utilities of all its associated users
𝑈 (𝑛) =

∑
𝑘∈𝒦𝑛

𝑈𝑘(�̄�𝑘). Assume the standard condition of
differentiability and strictly increasing concavity of 𝑈𝑘(⋅). We
adopt the generalized (𝑤,𝛼)-fair utility function introduced in
[12]:

𝑈𝑘(�̄�𝑘) =

{
𝑤𝑘 log �̄�𝑘, if 𝛼 = 1,
𝑤𝑘(1− 𝛼)−1�̄�1−𝛼

𝑘 , otherwise,
(3)

where 𝛼 and 𝑤𝑘 are positive. By varying the 𝛼 parameter, it
encompasses various notions of fairness, in particular, propor-
tional fairness (𝛼 = 1) and max-min fairness (𝛼→∞).

The set ℛ ⊂ ℝ
𝐾
+ of all achievable rates of users is

referred to as achievable rate region. First, denote by ℛ(𝑖) the
achievable rate when the system is in the 𝑖-th channel state.
The ℛ(𝑖) is essentially the convex hull of the set of feasible
rates for the 𝑖-th channel state, i.e.,

ℛ(𝑖) =
{
R̄(𝑖) = (�̄�

(𝑖)
𝑘 : 𝑘 ∈ 𝒦) ∣
∃ 𝜋𝜋𝜋(𝑖) ∈ Π, �̄�

(𝑖)
𝑘 =

∑
𝑝∈𝒫

𝜋
(𝑖)
𝑘𝑝 𝑟

(𝑖)
𝑘𝑝

}
,

(4)

where 𝜋
(𝑖)
𝑘𝑝 is the long-term fraction of time that user 𝑘 is

served under pattern 𝑝 for the 𝑖-th channel state; Π is the set
of nonnegative vectors 𝜋𝜋𝜋(𝑖) = (𝜋

(𝑖)
𝑘𝑝 : 𝑘 ∈ 𝒦, 𝑝 ∈ 𝒫) such that∑

𝑝∈𝒫
𝜋(𝑖)
𝑝 = 1 and

∑
𝑘∈𝒦𝑛

𝜋
(𝑖)
𝑘𝑝 ≤ 𝜋(𝑖)

𝑝 , ∀𝑛 ∈ 𝒩 , ∀𝑝 ∈ 𝒫𝑛.

(5)
Then, the ℛ is characterized by ℛ =

∑
𝑖∈ℐ 𝜃(𝑖)ℛ(𝑖), where

the addition of sets is defined as follows: 𝒳 + 𝒴 = {𝑥 + 𝑦 :
𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒴}. Thus, we can characterize the achievable rate
region ℛ by:

ℛ =
{
R̄ = (�̄�𝑘 : 𝑘 ∈ 𝒦) ∣ ∃ R̄(𝑖) ∈ ℛ(𝑖),

�̄�𝑘 =
∑
𝑖∈ℐ

𝜃(𝑖)�̄�
(𝑖)
𝑘 =

∑
𝑖∈ℐ

∑
𝑝∈𝒫

𝜃(𝑖)𝜋
(𝑖)
𝑘𝑝 𝑟

(𝑖)
𝑘𝑝

}
.

(6)

III. OPTIMAL ALGORITHM

In this section, the structure of optimal solutions is studied
analytically for a simple scenario to gain insight and an
optimal pattern selection and user scheduling algorithm that
generates the optimal solution is described.

A. Structure of Optimal Solution for Symmetric Networks with
Static Channels

For general networks, it is quite difficult to characterize the
optimal fractions of time for user-patterns (𝜋

(𝑖)
𝑘𝑝 : 𝑘 ∈ 𝒦, 𝑝 ∈

𝒫 , 𝑖 ∈ ℐ). However, we will show that it is indeed possible to
explicitly characterize them for symmetric networks with static
channels. A network is said to be symmetric if all BSs have
the same number of users, and their channel characteristics
are identical. Fig. 1 depicts an illustrative example of a linear
two-cell network having three patterns where (𝜒1, 𝜒2, 𝜒3) =
(1, 0.5, 0.5). Recall that 𝜒𝑝, the reuse factor of pattern 𝑝, is the
ratio of the number of BSs activated by pattern 𝑝 to the total
number of BSs. Since the network is symmetric, it is enough
to analyze the following optimization problem Q-symmetric
for a typical BS, say BS 1:

Q-symmetric:

max
(𝜋𝑘𝑝:𝑘∈𝒦1,𝑝∈𝒫1)

𝑈 (1) =
∑
𝑘∈𝒦1

𝑈𝑘(�̄�𝑘) (7)

subject to
∑
𝑝∈𝒫1

∑
𝑘∈𝒦1

𝜋𝑘𝑝

𝜒𝑝
≤ 1, (8)

𝜋𝑘𝑝 ≥ 0, ∀𝑘 ∈ 𝒦1, ∀𝑝 ∈ 𝒫1, (9)

�̄�𝑘 =
∑
𝑝∈𝒫1

𝜋𝑘𝑝𝑟𝑘𝑝, ∀𝑘 ∈ 𝒦1. (10)

Here, the constraint (8) originally comes from the condition
(5) on 𝜋𝑘𝑝. By additionally applying the symmetric condition
that the pattern having the same reuse factor should have
the same pattern portion to (5), we can readily derive the
constraint (8). For example, in the two-cell network case, the
derivation can be done as follows:

1 =
∑

𝑝∈𝒫 𝜋𝑝 = 𝜋1 + 𝜋2 + 𝜋3

= 𝜋1 + 2𝜋2 = 𝜋1/𝜒1 + 𝜋2/𝜒2 (∵ 𝜋2 = 𝜋3 by symmetry)
≥ ∑

𝑘∈𝒦1

𝜋𝑘1

𝜒1
+
∑

𝑘∈𝒦1

𝜋𝑘2

𝜒2
=

∑
𝑝∈𝒫1

∑
𝑘∈𝒦1

𝜋𝑘𝑝

𝜒𝑝
.

The problem Q-symmetric has an interesting structure of
optimal solution stated by Lemmas 3.1 and 3.2. Let 𝜒𝑝𝑟𝑘𝑝
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pattern 1

pattern 3

pattern 2
interference

no interference

BS 1 BS 2
(reference BS) equivalent

P1 = {1, 2} P2 = {1, 3}
Pattern 1: (BS1, BS2) = (ON,ON)
Pattern 2: (BS1, BS2) = (ON,OFF)
Pattern 3: (BS1, BS2) = (OFF,ON)

Fig. 1. Example of a linear two-cell network.

be the effective rate on pattern 𝑝 for user 𝑘, which is the
normalized data rate w.r.t. 𝜒𝑝. Note that there is a trade-off
between the reuse factor 𝜒𝑝 and the data rate 𝑟𝑘𝑝. If the user
𝑘 chooses the pattern 𝑝 with the lower value 𝜒𝑝, then the less
BSs are active in the network, and accordingly the higher data
rate 𝑟𝑘𝑝 is expected, and vice versa.

Lemma 3.1: For symmetric networks with static channels,
the objective (7) is maximized if and only if

𝜋𝑘𝑝

{
≥ 0, if 𝑝 = 𝑝∗(𝑘),
= 0, otherwise,

where 𝑝∗(𝑘) = argmax
𝑝

𝜒𝑝𝑟𝑘𝑝.

This implies that each user, if served, only utilizes the pattern
having the largest effective rate. For simplicity, we ignore the
case when more than two patterns have the same largest value
throughout the analysis in Section III. Accordingly, each user
𝑘 can always have the only one optimal pattern 𝑝 = 𝑝∗(𝑘)
with 𝜋𝑘𝑝 > 0.

Lemma 3.2: For the generalized (𝑤,𝛼)-fair utility function,
the optimal fractions of time for user-patterns is given by:

𝜋𝑘𝑝∗(𝑘) =
(
𝑤𝑘𝜒𝑝∗(𝑘)𝑟

1−𝛼
𝑘𝑝∗(𝑘)/𝜆0

)1/𝛼
and

𝜆0 =
( ∑

𝑝∈𝒫1

∑
𝑘∈𝒦1𝑝

𝑤
1/𝛼
𝑘 𝜒

1−𝛼
𝛼

𝑝∗(𝑘)𝑟
1−𝛼
𝛼

𝑘𝑝∗(𝑘)

)𝛼

,
(11)

where 𝒦1𝑝 is the set of users whose most effective pattern
having the highest effective rate is 𝑝, i.e., 𝑝 = 𝑝∗(𝑘) =
argmax𝑝 𝜒𝑝𝑟𝑘𝑝 if 𝑘 ∈ 𝒦1𝑝.

Please refer to Appendix for proofs of these lemmas. Now,
we give a numerical example to illustrate the property of the
optimal solution.

B. Example: A Linear Two-Cell Symmetric Network

Consider the example of the linear two-cell symmetric
network in the Fig. 1. In this example, we have three patterns
𝑝 ∈ 𝒫 = {1, 2, 3} where 𝒩1 = {1, 2},𝒩2 = {1}, 𝒩3 = {2}
and (𝜒1, 𝜒2, 𝜒3) = (1, 0.5, 0.5). Suppose that all users have
the same utility function with (𝑤,𝛼) = (1, 1). Then, we
can obtain 𝜆0 = ∣𝒦1∣ from (11) regardless of the values of
𝑟𝑘𝑝∗(𝑘). Let us denote by 𝒦11 and 𝒦12 the set of users such
that 𝑟𝑘1 ≥ 2𝑟𝑘2 (i.e., the set of center users) and the set
of users such that 𝑟𝑘1 < 2𝑟𝑘2 (i.e., the set of edge users),
respectively. Accordingly, the optimal pattern for each user
𝑘 ∈ 𝒦1, i.e., 𝑝∗(𝑘) = argmax𝑝 𝜒𝑝𝑟𝑘𝑝, is equal to 1 if
𝑘 ∈ 𝒦11, and 2 otherwise. Thus, we can obtain the optimal
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Fig. 2. Numerical example of the linear two-cell symmetric network where
each BS has two users; user 1 is in the inner region of the cell and user 2
is in the edge of the cell, whose instantaneous data rate vectors are given by
(𝑟11, 𝑟12) = (10, 11) and (𝑟21, 𝑟22) = (3, 8).

time fractions of user-patterns and the optimal portion for each
pattern (𝜋1, 𝜋2, 𝜋3) as follows:

𝜋𝑘𝑝∗(𝑘) =

{
∣𝒦1∣−1, if 𝑘 ∈ 𝒦11,

(2∣𝒦1∣)−1
, if 𝑘 ∈ 𝒦12,

(12)

𝜋1 =
∑

𝑘∈𝒦11

𝜋𝑘𝑝∗(𝑘) = ∣𝒦11∣/∣𝒦1∣ and

𝜋2 = 𝜋3 =
∑

𝑘∈𝒦12

𝜋𝑘𝑝∗(𝑘) = ∣𝒦12∣/(2∣𝒦1∣) .
(13)

Note that in the case of proportional fair (𝛼 = 1) the optimal
portion of each pattern depends only on and is proportional
to the number of users in the sets of center and edge users.
However, for general cases (𝛼 ∕= 1), its closed form is very
complex because the optimal portion of each pattern depends
on the data rate 𝑟𝑘𝑝∗(𝑘) for all users due to (11). Thus, we
rely on numerical computations for 𝛼 ∕= 1.

Fig. 2 depicts the optimal portion of patterns with respect to
the fairness criterion 𝛼. We fix the number of users as shown
in the Fig. 1, that is, each BS has two users: one is in the
center and the other in the edge of the cell, ∣𝒦1∣ = 2, ∣𝒦11∣ =
1, ∣𝒦12∣ = 1. When 𝛼 = 1, the optimal portion of patterns
can be given by (13): (𝜋1, 𝜋2, 𝜋3) = (1/2, 1/4, 1/4). Accord-
ingly, user throughputs can be easily calculated: (�̄�1, �̄�2) =
(𝜋11𝑟11, 𝜋22𝑟22) = (𝜋1𝑟11, 𝜋2𝑟22) = (5, 2). When we increase
𝛼, i.e., enforcing more fairness, the portions of pattern 2 and
3 avoiding ICI increase in order to increase the throughput
of edge users. On the other hand, when we decrease 𝛼, the
portion of pattern 1 increases as expected. In the extreme case,
throughput maximization (𝛼 goes 0), only user 1 having a
better channel is always served with pattern 1, and user 2
cannot be served at all, i.e., (𝜋1, 𝜋2, 𝜋3) = (1, 0, 0).

C. Joint Optimal Pattern Selection and User Scheduling Al-
gorithm

We now present an joint optimal pattern selection and
user scheduling algorithm. To that end, we use a stochastic
gradient-based algorithm, e.g., [13] (only considering user
scheduling in a single-cell system), that selects the achievable
rate vector maximizing the sum of weighted rates where the
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weights are marginal utilities at each slot. Then, it suffices
to solve the following problem at each slot, which jointly
determines the pattern selection X(𝑡) = (𝑋𝑝(𝑡) : 𝑝 ∈ 𝒫)
and user scheduling I(𝑡) = (𝐼𝑘(𝑡) : 𝑘 ∈ 𝒦):
Q-joint: (14)

max
X(𝑡),I(𝑡)

Δ𝑈(𝑡) =
∑
𝑘∈𝒦

𝑈 ′
𝑘(�̄�𝑘(𝑡− 1))𝑟𝑘(𝑡) (15)

subject to
∑
𝑝∈𝒫

𝑋𝑝(𝑡) = 1, (16)

∑
𝑘∈𝒦𝑛

𝐼𝑘(𝑡)

{
≤ 1, if 𝑋𝑝(𝑡) = 1 and 𝑛 ∈ 𝒩𝑝,
= 0, otherwise,

(17)

where 𝑟𝑘(𝑡) =
∑

𝑝∈𝒫 𝑋𝑝(𝑡)𝐼𝑘(𝑡)𝑟𝑘𝑝(𝑡) is the actual data rate
assigned to user 𝑘 at slot 𝑡 and �̄�𝑘(𝑡) = 1

𝑡

∑𝑡
𝜏=1 𝑟𝑘(𝜏) =

�̄�𝑘(𝑡−1)+ 𝜖𝑡
[
𝑟𝑘(𝑡)− �̄�𝑘(𝑡− 1)

]
(by letting 𝜖𝑡 = 1/𝑡) is the

long-term throughput for user 𝑘 up to slot 𝑡.
Remark 3.3: If we fix the user scheduling I(𝑡) and choose

utility function as 𝑈𝑘(�̄�𝑘) = �̄�𝑘 in Q-joint, then this problem
is reduced to binary power control (BPC) problem for sum-
rate maximization in [2].

The problem Q-joint can be naively solved by an exhaustive
search. For each pattern 𝑝, it needs to compare all possible
combinations of user scheduling for all BSs. Thus, this naive
approach requires 𝑂(𝑃 ⋅𝐾𝑁) complexity, which is compu-
tationally intractable. However, Lemma 3.4 tells us the nice
property of the problem that we need to consider only the
case with the best users selected by intra-cell user scheduling
in (18) instead of all possible combination of user scheduling
for each pattern.

Lemma 3.4: The problem Q-joint can be decomposed into
the following ∣𝒩𝑝∣ independent intra-cell user scheduling
problems for a given pattern 𝑝:

𝑘∗
𝑛(𝑡) = arg max

𝑘∈𝒦𝑛

𝑈 ′
𝑘(�̄�𝑘(𝑡− 1))𝑟𝑘𝑝(𝑡), ∀𝑛 ∈ 𝒩𝑝. (18)

Please refer to Appendix for a proof.
With the help of Lemma 3.4, we can develop the joint

optimal pattern selection and user scheduling algorithm. For
each pattern 𝑝, we select the best user having the largest value
of 𝑈 ′

𝑘(�̄�𝑘(𝑡 − 1))𝑟𝑘𝑝(𝑡) from (18) and then the best pattern
𝑝∗(𝑡) that maximizes the sum of weighted rate 𝑈 ′

𝑘(�̄�𝑘(𝑡 −
1))𝑟𝑘𝑝∗(𝑡) of the scheduled users. Note that it has much
lower complexity2 𝑂(𝑃 ⋅∑𝑛∈𝒩 𝐾𝑛) = 𝑂(𝑃 ⋅𝐾) than that
of exhaustive search 𝑂(𝑃 ⋅𝐾𝑁). The proof of convergence
to the optimal solution is a slight extension to [13], [14] that
studied only user scheduling for a fixed pattern. We skip the
proof.

Joint pattern selection and user scheduling algorithm

At each slot 𝑡, compute (𝑝∗(𝑡), 𝑘∗
𝑛(𝑡), 𝑛 ∈ 𝒩 ) satisfying

𝑝∗(𝑡) = argmax
𝑝∈𝒫

∑
𝑛∈𝒩𝑝

[
max
𝑘∈𝒦𝑛

𝑈 ′
𝑘(�̄�𝑘(𝑡− 1))𝑟𝑘𝑝(𝑡)

]
,

𝑘∗
𝑛(𝑡) = arg max

𝑘∈𝒦𝑛

𝑈 ′
𝑘(�̄�𝑘(𝑡− 1))𝑟𝑘𝑝∗(𝑡), ∀𝑛 ∈ 𝒩𝑝∗ .

(19)

2The maximum operation in the intra-cell user scheduling requires linear
complexity in the number of users.

This joint optimal pattern selection and user scheduling
algorithm requires instantaneous channel feedbacks from all
users in the network. We assume that at each slot 𝑡, user
𝑘 estimates its own SINR for all patterns 𝑝 ∈ 𝒫𝑎(𝑘) upon
listening to pilot signals, calculates the instantaneous data
rate 𝑟𝑘𝑝(𝑡) and then reports this information to the cental
coordinator through its serving BS.

However, this joint optimal algorithm still has implementa-
tion difficulties. Apart from the computational complexity of
this algorithm, the central coordinator running the algorithm
needs to collect the following information from each BS
𝑛 ∈ 𝒩 : instantaneous data rate 𝑟𝑘𝑝(𝑡) of all its associated
users 𝑘 ∈ 𝒦𝑛 on its available patterns 𝑝 ∈ 𝒫𝑛. The total
amount of feedbacks is quite large, i.e, (

∑
𝑛∈𝒩 ∣𝒦𝑛∣∣𝒫𝑛∣),

though they may be delivered along with high speed wired
links. Furthermore, a series of tasks, including information
feedback from BSs to the central coordinator as well as
the computation and the distribution of central coordinator’s
decision, should be performed in one slot.

IV. TIME-SCALE DECOMPOSED ALGORITHM

A. Algorithm Description

In contrast to the centralized joint pattern selection and
user scheduling algorithm in Section III, user scheduling in
practice is typically undertaken by individual BSs indepen-
dently without any coordination or information exchanges with
other BSs. In this section, in order to take into account such
autonomous features in user scheduling and to overcome high
computation and feedback overhead in the optimal algorithm,
user scheduling is run at every slot, whereas pattern portion
change less frequently, in this case, every 𝑇𝑝 >> 1 slots. We
first describe the proposed algorithm (see Fig. 3 for a pictorial
description) and then explain the rationale behind it.

Pattern portion change algorithm

Initialization: 𝜋𝑝 = 1/∣𝒫∣ for all 𝑝 ∈ 𝒫 .
For every 𝑇𝑝 slots, each BS 𝑛 ∈ 𝒩 computes the partial
derivative 𝐷

(𝑛)
𝑝

.
= ∂𝑈 (𝑛)/∂𝜋𝑝 and sends it to the central

coordinator,

𝐷(𝑛)
𝑝 =

∑
𝑘∈𝒦𝑛

𝑈 ′
𝑘(�̄�𝑘)⋅

( �̄�𝑘𝑝

𝜋𝑝
𝑟𝑘𝑝

)
, 𝑝 ∈ 𝒫𝑛. (20)

Then, the central coordinator calculates the gradient vector
D = (𝐷1, 𝐷2, ⋅ ⋅ ⋅ , 𝐷𝑃 ) by collecting 𝐷

(𝑛)
𝑝 from all BSs,

𝐷𝑝 =
∑
𝑛∈𝒩

𝐷(𝑛)
𝑝 , 𝑝 ∈ 𝒫 , (21)

and updates the pattern portion vector 𝝅 as follows,

𝝅 ← 𝑃𝑟𝑜𝑗∑
𝑝∈𝒫 𝜋𝑝=1, (𝝅 + 𝛾D) , (22)

where 𝑃𝑟𝑜𝑗𝐴(⋅) denotes an orthogonal projection on a set 𝐴.

User scheduling algorithm

Initialization: �̄�𝑘(0) = �̄�𝑘𝑝(0) = 𝑟𝑘𝑝(0) = 0.
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Fig. 3. Proposed time-scale decomposed algorithms.

At each slot 𝑡, each BS 𝑛 ∈ 𝒩𝑝(𝑡) activated by pattern 𝑝(𝑡)
selects the user 𝑘∗

𝑛(𝑡), i.e., 𝐼𝑘∗
𝑛𝑝(𝑡) = 1,

𝑘∗
𝑛(𝑡) = arg max

𝑘∈𝒦𝑛

𝑈 ′
𝑘(�̄�𝑘(𝑡− 1))𝑟𝑘𝑝(𝑡),

3 (23)

and updates the following variables for all users 𝑘 ∈ 𝒦𝑛 with
some constants 0 < 𝛽1, 𝛽2, 𝛽3 < 1:

�̄�𝑘(𝑡) = (1− 𝛽1)�̄�𝑘(𝑡− 1) + 𝛽1𝐼𝑘(𝑡)𝑟𝑘𝑝(𝑡) ,
�̄�𝑘𝑝(𝑡) = (1− 𝛽2)�̄�𝑘𝑝(𝑡− 1) + 𝛽2𝐼𝑘(𝑡) ,

𝑟𝑘𝑝(𝑡) =

{
(1− 𝛽3)𝑟𝑘𝑝(𝑡− 1) + 𝛽3𝑟𝑘𝑝(𝑡), if 𝐼𝑘(𝑡) = 1 ,
𝑟𝑘𝑝(𝑡− 1), otherwise.

(24)

Two algorithms with different time scales interact with each
other as follows: The pattern portion change algorithm adjusts
the portion of reuse patterns 𝝅 for every 𝑇𝑝 slots, using the
variables �̄�𝑘(𝑡), �̄�𝑘𝑝(𝑡) and 𝑟𝑘𝑝(𝑡). These variables essentially
correspond to the long-term averages of 𝐼𝑘(𝑡)𝑟𝑘𝑝(𝑡), 𝜋𝑘𝑝(𝑡),
and 𝑟𝑘𝑝(𝑡) which are progressively updated at every slot by
the user scheduling algorithm. This time-scale decomposition
and the way of interaction between the two algorithms implies
that the pattern portion algorithm is designed and operated so
that it tracks only the average interference levels and channel
conditions rather than instantaneous conditions such as the
joint optimal algorithm in Section III. Considering that a user
scheduling algorithm can be carried out autonomously, the
actual (amortized) complexity and message passing overhead
per slot can be significantly reduced, which makes the pro-
posed algorithms much more implementable. Subsection IV-C
includes a discussion of the value of such complexity reduc-
tion, i.e., a utility performance gap compared to the optimal
algorithm.

B. Rationale of Time-scale Decomposed Algorithms

The pattern portion change algorithm can be regarded as
a standard gradient projection algorithm for the following

3For completeness, if a tie happens, the BS choose the lower indexed
user.

problem:

Q-pattern:

max
𝝅

∑
𝑘∈𝒦

𝑈𝑘(�̄�𝑘) =
∑
𝑘∈𝒦

𝑈𝑘

(∑
𝑝∈𝒫

𝜙𝑘𝑝𝜋𝑝𝑟𝑘𝑝

)

subject to
∑
𝑝∈𝒫

𝜋𝑝 = 1,

where 𝜙𝑘𝑝 ∈ [0, 1] is the probability that the user 𝑘 is
scheduled when pattern 𝑝 is selected, i.e., 𝜙𝑘𝑝 ⋅ 𝜋𝑝 = �̄�𝑘𝑝.
For each pattern portion update epoch, i.e., every 𝑇𝑝 slots,
each BS 𝑛 calculates the partial derivative 𝐷

(𝑛)
𝑝

.
=∂𝑈 (𝑛)/∂𝜋𝑝

of per-cell utility 𝑈 (𝑛) with respect to the portion of pattern
𝑝 and sends these information to the central coordinator.

𝐷(𝑛)
𝑝

.
=

∂𝑈 (𝑛)

∂𝜋𝑝
=

∑
𝑘∈𝒦𝑛

𝑈 ′
𝑘(�̄�𝑘) ⋅ ∂�̄�𝑘

∂𝜋𝑝
, (25)

where

∂�̄�𝑘

∂𝜋𝑝
= 𝜙𝑘𝑝𝑟𝑘𝑝 =

�̄�𝑘𝑝

𝜋𝑝
𝑟𝑘𝑝. (26)

Note that three parameters (�̄�𝑘, �̄�𝑘𝑝 and 𝑟𝑘𝑝) required to
run this pattern portion update algorithm can be attained by
the user scheduling algorithm. Then the central coordinator
gathers information from all BSs and calculates the partial
derivative of the network utility 𝐷𝑝

.
= ∂𝑈/∂𝜋𝑝 by aggregating

these partial derivatives of the local utility,

𝐷𝑝
.
=

∂𝑈

∂𝜋𝑝
=

∑
𝑛∈𝒩

𝐷(𝑛)
𝑝 , 𝑝 ∈ 𝒫 , (27)

and updates the portion of reuse patterns following the ascent
direction of network utility.

𝝅 ← 𝑃𝑟𝑜𝑗∑
𝑝∈𝒫 𝜋𝑝=1, (𝝅 + 𝛾D) . (28)

Based on the updated portion of patterns, the central co-
ordinator predetermines the sequence of patterns for next 𝑇𝑝

slots that satisfies:

(the total number of pattern 𝑝) / 𝑇𝑝 ≈ 𝜋𝑝 , ∀𝑝 ∈ 𝒫 . (29)

While there may be many strategies that leads to (29), a
nice candidate is a random strategy. The central coordinator
sequentially determines the sequence of patterns by rolling a
𝑃 -dimensional die 𝑇𝑝 times with probability of the pattern 𝑝
being 𝜋𝑝. Once the sequence of patterns for next 𝑇𝑝 slots is
determined by the pattern portion change algorithm, then both
BSs and users are informed of the sequence.

Now we develop the user scheduling algorithm under the
fixed pattern given by the pattern portion change algorithm.
From Lemma 3.4, for given pattern, the network-wide user
scheduling problem can be decomposed into independent
intra-cell user scheduling problems. Therefore, each BS needs
to solve the following problem:

Q-scheduling:

max
(𝐼𝑘(𝑡),𝑘∈𝒦𝑛)

∑
𝑘∈𝒦𝑛

𝑈 ′
𝑘(�̄�𝑘(𝑡− 1))𝐼𝑘(𝑡)𝑟𝑘𝑝(𝑡)

subject to
∑
𝑘∈𝒦𝑛

𝐼𝑘(𝑡) ≤ 1.
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TABLE I
COMPARISON BETWEEN JOINT OPTIMAL ALGORITHM (JOA) AND TIME-SCALE DECOMPOSED ALGORITHM (TDA)

Joint optimal algorithm (JOA) Time-scale decomposed algorithm (TDA)

Time-scale of algorithm every slot
every slot (user scheduling)

every 𝑇𝑝 slot (pattern portion change)

Amount of feedback to each BS 𝑛 at each slot ∣𝒦𝑛∣∣𝒫𝑛∣ ∣𝒦𝑛∣
Amount of feedback to the central coordinator

∑
𝑛∈𝒩 ∣𝒦𝑛∣∣𝒫𝑛∣

∑
𝑛∈𝒩 ∣𝒫𝑛∣

Period of feedback to the central coordinator 1 𝑇𝑝

The user scheduling algorithm solving Q-scheduling is
straightforward. Each BS 𝑛 ∈ 𝒩𝑝 allowed to use the pat-
tern 𝑝 independently chooses the best user 𝑘∗

𝑛(𝑡) among its
associated user set 𝒦𝑛, i.e., 𝐼𝑘∗

𝑛
(𝑡) = 1:

𝑘∗
𝑛(𝑡) = arg max

𝑘∈𝒦𝑛

𝑈 ′
𝑘(�̄�𝑘(𝑡− 1))𝑟𝑘𝑝(𝑡), ∀𝑛 ∈ 𝒩𝑝, (30)

and updates the following variables for the future purpose of
the pattern portion change algorithm:

�̄�𝑘(𝑡) = (1− 𝛽1)�̄�𝑘(𝑡− 1) + 𝛽1𝐼𝑘(𝑡)𝑟𝑘𝑝(𝑡) ,
�̄�𝑘𝑝(𝑡) = (1− 𝛽2)�̄�𝑘𝑝(𝑡− 1) + 𝛽2𝐼𝑘(𝑡) ,

𝑟𝑘𝑝(𝑡) =

{
(1 − 𝛽3)𝑟𝑘𝑝(𝑡− 1) + 𝛽3𝑟𝑘𝑝(𝑡), if 𝐼𝑘(𝑡) = 1 ,
𝑟𝑘𝑝(𝑡− 1), otherwise,

where 𝛽1, 𝛽2, 𝛽3 > 0 are small, averaging parameters; �̄�𝑘(𝑡),
�̄�𝑘𝑝(𝑡) and 𝑟𝑘𝑝(𝑡) are the average throughput of user 𝑘, the
average fraction of time that user 𝑘 is served with pattern 𝑝,
and the average instantaneous data rate when the user 𝑘 is
served with pattern 𝑝, respectively.

Remark 4.1: For the user scheduling algorithm, it is re-
quired for each user to predict its potential data rate for the
pattern in the next slot and report to its serving BS. We assume
that each user can estimate the channel gains of different BSs
from common pilot channels and send channel quality infor-
mation to its serving BS through dedicate feedback channels.
These functionalities are considered as a basic requirement in
legacy and upcoming standard. Thus, each user can calculate
its SINR for the pattern in the next slot by regarding the
interference only from the activated BSs in the next slot as
effective interference. Then, each user reports the predicted
SINR (or corresponding potential data rate) to its serving BS.
If the serving BS will not be activated in the next slot, the
user does not need to send feedback at all.

Remark 4.2: There are two key differences between a re-
cent algorithm [7] and the proposed algorithm. First, the
referenced study additionally introduces a virtual scheduler to
obtain the fraction of time in which the scheduler chooses user
𝑖 for transmission in sub-band 𝑗 (their notation: 𝜙𝑖𝑗 ). In the
proposed algorithm, however, the fraction of time that user 𝑘
is served with pattern 𝑝 (our notation: �̄�𝑘𝑝) is simply obtained
using the actual scheduler without an extra algorithm. Second,
the referenced study does not reflect the time-varying nature of
the data rate available to user 𝑖 in sub-band 𝑗 (their notation:
𝑅𝑖𝑗 ), as they assume that this rate does not change with time.
In the proposed algorithm, the long-term average of the data
rate of user 𝑘 on pattern 𝑝 (our notation: 𝑟𝑘𝑝) is not just the
average of instantaneous data rate. We take the average of
instantaneous data rate only if the user 𝑘 is actually served

by the scheduler. In other words, the value of 𝑟𝑘𝑝 in the
proposed algorithm can reflect the multi-user diversity gain
from exploiting the channel fluctuation.

C. Complexity Reduction and Its Price

The proposed time-scale decomposed algorithm still in-
volves signalings from BSs to a central coordinator. However,
it is possible to reduce feedback overhead significantly, as
the periodicity of the feedback is stretched from every slot to
every 𝑇𝑝 slot. Moreover, the amount of feedback is reduced
from

(∑
𝑛∈𝒩 ∣𝒦𝑛∣∣𝒫𝑛∣

)
to

(∑
𝑛∈𝒩 ∣𝒫𝑛∣

)
; i.e., it requires

only BS-level feedback and not user-level channel feedback.
The amount of feedback to each BS from its associated users
at each slot is also reduced from ∣𝒦𝑛∣∣𝒫𝑛∣ and ∣𝒦𝑛∣, as users
need to send channel information only for a predetermined
pattern. Table I compares the joint pattern selection and user
scheduling algorithm with the proposed algorithms based on
time-scale decomposition.

This complexity reduction for implementability comes at
the cost of a performance gap with the joint optimal algorithm.
This is due to the fact that the ICI management part in
the decomposed algorithm cannot fully exploit instantaneous
inter-cell channel variations; hence, only intra-cell channel
variations are opportunistically utilized. Note that in the joint
optimal algorithm, both pattern selection and user scheduling
fully exploit both inter-cell and intra-cell time-varying channel
conditions at a fast time scale.

As an example, consider a two cell network where two users
are located at the edge of each cell. Their achievable rates
are limited by severe ICI. The decomposed algorithm will
find the following TDMA-like solution: BS 1 and BS 2 are
exclusively active in order to mitigate the ICI, i.e., the portion
of the pattern in which both BSs are active is nearly zero.
However, suppose that both (time-varying) inter-cell channel
gains from BS 1 (or 2) to the user in BS 2 (or 1) experience
deep fading at some time slot. You can imagine this case as if
there were a large wall between two cells. Subsequently the
user in cell 1 (or 2) is not interfered by the BS transmission in
cell 2 (or 1). Therefore, serving two users simultaneously is
transiently optimal in this inter-cell deep fading case, whereas
a pattern that only one BS is active is the solution for the
average ICI mitigation case. The joint optimal algorithm can
find this optimal solution by tracking this fast fading condition
while the decomposed algorithm cannot. This is the cost for
the complexity reduction, however, as shown in Section V, the
performance gap becomes negligible in then absence of fast
fading.
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D. Construction method of the candidate pattern set 𝒫
The number of all possible patterns in the network is an ex-

ponential function of the number of BSs, which may increase
the complexity of the algorithm and reduce its practicality
in the large network. However, most of these patterns are
actually not used at all, thus it is required to select the essential
candidate set of patterns out of all possible patterns.

Several papers [8], [15] have investigated on this topic.
Bonald et al. [8] investigated an optimal transmit profile in the
cellular network based on flow-level analysis. They concluded
based on all their examples that the optimal capacity is attained
by the use of two kinds of transmission patterns only: 1) one
pattern is that all BSs are on and 2) the other patterns are
that only the dominant interfering BS is switched off. Raman
et al. [15] proposed a centralized spectrum server that finds
an optimal schedule to maximize the average sum rate in
general ad-hoc networks. They also conjectured that almost
always only very few active transmission patterns are used as
corroborated by their simulation results.

Encouraged by the observations in [8], [15], we make a
practical guideline how to determine the candidate pattern set
𝒫 as follows. The set should contain two kinds of mandatory
patterns: 1) reuse-1 pattern: all BSs are active and 2) dominant
patterns 𝑝: all neighboring BSs except the dominant interfering
BS are activated by the pattern 𝑝. Any other appropriate
patterns may be added in an optional manner if system
designers want to increase the performance further, but the
increment might be marginal.

V. PERFORMANCE EVALUATION

A. Simulation Setup

Two network configurations are considered for simulation-
based performance evaluations: (i) a linear two-cell network
and (ii) a two-tier multi-cell network with 19 cells. In both
cases, the distance between BSs is set at 2km.

∙ Linear two-cell network (see Fig. 1): There are three
patterns 𝒫 = {1, 2, 3}. Under pattern 1, both BSs are
ON, and under pattern 2 (resp. 3), only BS 1 (resp. 2) is
ON.

∙ Two-tier multi-cell network (see Fig. 4): 11 patterns (8
mandatory + 3 optional reuse-3 patterns) are considered.
Under pattern 1, all BSs are ON. Under patterns 2∼4
(only one BS reuses the pattern among adjacent three
BSs) or 5∼11 (six BSs reuse the pattern among adjacent
seven BSs), a BS using these two types of patterns can
expect ICI mitigation from the first-tier and from one of
its neighboring cells, respectively.

In modeling the propagation environment, a path loss
−130−35 log10(𝑑𝑘𝑚), log-normal shadowing with a standard
deviation 𝜎𝑠=8dB and Jakes’ Rayleigh fading (3km/h) for
fast fading are adopted. In subsection V-B, we evaluate the
performance of the proposed algorithm with and without
fast fading cases. In the case with fast fading, the channel
varies over the time since all the above mentioned models
are considered. On the other hand, in the case without fast
fading, we consider only the path loss and shadowing models
except Jakes’ fading. Therefore, the channels remain stable
during the simulation time. The channel bandwidth and the
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Fig. 4. Two-tier multi-cell network composed of 19 cells.

time-slot length are set at 10MHz and 5ms, respectively. The
maximum transmission powers of the BSs are all identical
to 20W. The other parameters for the simulations follow the
suggestions in the IEEE 802.16m evaluation methodology
document [16]. All users have a logarithmic utility function,
i.e., (𝑤,𝛼) = (1,1). The pattern update period 𝑇𝑝 is set at 500
and the step size is chosen to be a typically small value, i.e.,
𝛽1 = 𝛽2 = 𝛽3 = 𝛾 = 0.001. We have tested other values
of 𝑇𝑝, 𝛽1, 𝛽2, and 𝛽3, and the similar results were obtained.
Simulations were run of over 50000 slots.

To evaluate the performance under various user distribution
scenarios, we introduce a variable, so-called, “user distribution
offset” 𝜌 ∈ [0, 1]. It adjusts the minimum distance between the
BS and the user to 𝜌 × (cell radius). Users in each cell are
randomly distributed with this minimum distance restriction.
For example, if 𝜌 = 0, users are uniformly generated over the
entire cell. On the other hand, if 𝜌 becomes 1, users swarm
the edge areas of cells.

Simulation results of the following three algorithms are
presented:(i) a conventional universal reuse scheme (UNI), in
which all BSs in the network are always active without any
ICI management, (ii) the joint optimal algorithm (JOA) in
(19), and (iii) the algorithm based on time-scale decomposition
(TDA) in (20)∼(24). As performance metrics, the geometric
average of user throughputs (GAT) and the average of edge
user throughputs (AET) are used. We use GAT because
maximizing this metric is equivalent to the system objective
(sum of log throughputs). AET is a measure of cell edge
performance that is defined as the average throughput of the
users located at the cell edges. In simulation, we treat “edge
users” as those who are more than 800m away from their
serving BSs, otherwise termed “center users”.

B. Two-Tier 19-Cell Network Case

We first consider the two-tier multi-cell network with 19
cells, where each cell has ten users. Without fast fading, as
shown in Fig. 5(a), both JOA and TDA perform similarly.
Compared to UNI, GAT and AET of JOA and TDA increases
by 10∼33% (depending on the user distribution) and by
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Fig. 5. Throughput performances of three algorithms: joint optimal algorithm
(JOA), time-scale decomposed algorithm (TDA) and universal reuse (UNI).

33%. A higher performance gain was observed when the user
distribution offset is larger (i.e., more users are located at the
cell edges), which is due to the fact that ICI management
mainly targets for performance improvement of edge users.
With fast fading, as shown in Fig. 5(b) however, as discussed
in subsection IV-C, a performance gap between JOA and TDA
exists due to the loss in opportunism in TDA. However, TDA
still outperforms UNI in terms of both GAT (5∼25% depend-
ing on user distribution) and AET (25%). It is noteworthy that
TDA can attain more than 1/2 (at 𝜌 = 0) and up to 2/3 (at
𝜌 = 0.9) of the GAT performance gain that can be achieved
by JOA.

Fig. 6 shows the convergence of 11 pattern portions when
offset 𝜌 is equal to 0.3. As you can see, the pattern portions
converge quickly in 10∼15 iterations. Even in different net-
work configurations (with a different number of BSs and a
different values of offset), we could see similar convergence
trends, e.g., typically within 10∼20 iterations.

In our simulation, the proportional fairness (𝛼 = 1) is
considered as our system objective. Although additional sim-
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ulation results with other values of 𝛼 are not included in this
paper due to space limitations, higher performance gains were
obtained for higher values of 𝛼 (i.e., higher fairness objec-
tives), as increasing the throughput of edge users is essential
in order to achieve higher fairness. Thus, ICI management
can offer conspicuous improvement in a network pursuing
fairness-oriented system objectives.

C. Adaptation Test

To test adaptation to dynamic changes in user loads, the
linear two-cell network was used. The user load distribution
was varied every 2×104 slots (=100 sec) as shown in Fig. 7(a).
The TDA was compared with other three static schemes: RF1,
RF2 and MIXED. RF1 and RF2 correspond to those with reuse
factors 1 and 2, respectively. RF1 and RF2 are incorporated in
the MIXED scheme, which operates as a RF1 during the half
portion of the time and RF2 during the other half portion of
the time. The RF1, RF2 and MIXED schemes can be regarded
as those with static pattern portions (𝜋1, 𝜋2, 𝜋3) = (1, 0, 0),
(0, 0.5, 0.5) and (0.5, 0.25, 0.25), respectively.

Fig. 7(b) shows the pattern portion adaptation characteristics
of TDA to a dynamic user load distribution. In the period 1
(0 ∼ 2× 104 slots), as there are relatively many users around
the cell center, the portion of pattern 1 increases up to 80%,
which is nearly identical to that of RF1. On the other hand, in
the another (8 ∼ 10× 104 slots), as there are relatively many
users around the cell edge, the portion of pattern 1 decreases
up to 20%, which is nearly identical to that of RF2. Users are
equally divided into center and edge regions in the period 2
(2 ∼ 4 × 104 slots) so that the pattern portion becomes (0.5,
0.25, 0.25) like as MIXED. In periods 3 and 4, there is the
same number of center users in each cell, but the number of
edge users are different; i.e., heterogeneous load distribution.
In period 3 (resp. 4), BS A (resp. B) exceeds the number
of edge users. As expected, 𝜋2 (resp. 𝜋3) increases while 𝜋3

(resp. 𝜋2) decreases.
Fig. 7(c) shows the GAT performance comparison period

by period. Static schemes perform well only if the user load
distribution fits their patterns, for example, RF1 in period 1,
RF2 in period 5 and MIXED in period 2. In the cases in-
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Fig. 7. Adaptiveness to dynamic user load.

volving other distributions, however, performance degradation
is inevitable. Compared to these static schemes, the proposed
TDA scheme can adapt to the dynamic user load distribution
and find the optimal portion of patterns. Therefore, it always
achieves the best performance in all cases.

D. Imbalance Load Scenario: Association Control vs. Inter-
ference Control

We also test the performance in the linear two-cell network
for imbalanced loads. Two users were located 900m away from
BS 1 and (2×𝐿𝐼) users were located 900m away from BS 2,
respectively, where 𝐿𝐼 quantifies the load imbalance. Under
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Fig. 8. Association control vs. interference control under imbalanced load.

this load imbalance scenario, the performance of the follow-
ing two different approaches are compared: (i) Association
control: a load-aware handover in [9] and (ii) Interference
control: the proposed TDA. As a baseline, we considered the
GAT performance of UNI and normalized the performance of
the two approaches above by UNI.

Originally, users are associated with the closest BS offering
the best signal strength. In the case of the association control
approach, however, if the expected throughput measure in [9]
from the other BS is greater than that from the current BS, then
the user changes its association. When the 𝐿𝐼 value is small,
users do not change their associations. When 𝐿𝐼 is increased
to more than 6, association changes from the hot-spot cell (BS
2) and the under-loaded cell (BS1) occur (moving one, two
and three users at 𝐿𝐼=6, 8 and 10, respectively) according to
the load-aware handover in [9]. As shown in Fig. 8, however,
the gain from the association control is marginal.

On the other hand, using the interference control approach,
we can implicitly resolve the load imbalance by preventing the
hot-spot cell (BS 2) from being turned off, i.e., provide more
interference-free transmission opportunities compared to BS 1.
In brief, the interference control approach originally developed
for ICI mitigation can also resolve the load imbalance as well,
and the improvement of interference control is superior to that
of the association control.

VI. CONCLUSION

In this paper, we have focused on the problem of joint ICI
management and user scheduling in multi-cell networks. It was
shown that the joint optimal algorithm is too complex in terms
of computational and signaling overhead to be implemented in
practical systems. To overcome this complexity and make the
algorithm practical, we decomposed the original optimization
problem into two sub-problems, where ICI management is
run at a slower time scale compared to user scheduling. This
time-scale decomposition stems from a design rationale in
which ICI management may not have to track fast changing
dynamics, and it may suffice to attain much gain simply by
running it based only on macroscopic network changes. We
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empirically show that even with such a slow tracking of the
system dynamics at the ICI management, our algorithm can
achieve high performance gain compared to the conventional
universal reuse scheme. Moreover, it is practically imple-
mentable compared to the very complex optimal algorithm.

APPENDIX

A. Proof of Lemma 3.1

Let 𝜆0 and 𝜆𝑘𝑝 denote the Lagrangian multiplier associated
with the constraint (8) and constraint (9), respectively. Then
the Lagrangian function is given by:

ℒ(𝜋, 𝜆) =
∑
𝑘∈𝒦1

𝑈𝑘(�̄�𝑘)−𝜆0

( ∑
𝑝∈𝒫1

∑
𝑘∈𝒦1

𝜋𝑘𝑝

𝜒𝑝
− 1

)

+
∑
𝑘∈𝒦1

∑
𝑝∈𝒫1

𝜆𝑘𝑝𝜋𝑘𝑝.

The problem Q-symmetric is a convex optimization so the
necessary and sufficient conditions for optimality are given
by Karush-Kuhn-Tucker (KKT) conditions [17]:

i) 𝜆0 ≥ 0 and 𝜆𝑘𝑝 ≥ 0, ∀𝑘 ∈ 𝒦1, ∀𝑝, (31)

ii) 𝜆0

(∑
𝑝∈𝒫1

∑
𝑘∈𝒦1

𝜋𝑘𝑝

𝜒𝑝
− 1

)
= 0 and 𝜆𝑘𝑝𝜋𝑘𝑝 = 0, ∀𝑘, ∀𝑝, (32)

iii)
∂ℒ
∂𝜋𝑘𝑝

= 𝑈 ′
𝑘(�̄�𝑘)𝑟𝑘𝑝 − 𝜆0

𝜒𝑝
+ 𝜆𝑘𝑝 = 0, ∀𝑘 ∈ 𝒦1, ∀𝑝. (33)

Substituting (33) into (32) and (31) yields the following
conditions, (34) and (35), respectively.[

𝜆0

𝜒𝑝
− 𝑈 ′

𝑘(�̄�𝑘)𝑟𝑘𝑝

]
𝜋𝑘𝑝 = 0, ∀𝑘 ∈ 𝒦1, ∀𝑝 ∈ 𝒫1, (34)

𝜆0 ≥ 𝑈 ′
𝑘(�̄�𝑘)𝜒𝑝𝑟𝑘𝑝, ∀𝑘 ∈ 𝒦1, ∀𝑝 ∈ 𝒫1. (35)

Let 𝑝∗(𝑘) = argmax
𝑝

𝜒𝑝𝑟𝑘𝑝 denote the most efficient pattern

of user 𝑘. By (35), there are two cases.
Case 1: If 𝜆0 > 𝑈 ′

𝑘(�̄�𝑘)𝜒𝑝∗(𝑘)𝑟𝑘𝑝∗(𝑘), then[
𝜆0

𝜒𝑝
− 𝑈 ′

𝑘(�̄�𝑘)𝑟𝑘𝑝

]
> 𝑈 ′

𝑘(�̄�𝑘)𝑟𝑘𝑝

(
𝜒𝑝∗(𝑘)𝑟𝑘𝑝∗(𝑘)

𝜒𝑝𝑟𝑘𝑝
− 1

)
> 0.

Consequently, (34) holds only if 𝜋𝑘𝑝 = 0, ∀𝑘, ∀𝑝, however,
this is not a reasonable solution.
Case 2: If 𝜆0 = 𝑈 ′

𝑘(�̄�𝑘)𝜒𝑝∗(𝑘)𝑟𝑘𝑝∗(𝑘), then[
𝜆0

𝜒𝑝
− 𝑈 ′

𝑘(�̄�𝑘)𝑟𝑘𝑝

]
= 𝑈 ′

𝑘(�̄�𝑘)𝑟𝑘𝑝

(
𝜒𝑝∗(𝑘)𝑟𝑘𝑝∗(𝑘)

𝜒𝑝𝑟𝑘𝑝
− 1

)
.

Consequently, (34) holds only if 𝜋𝑘𝑝 ≥ 0 if 𝑝 = 𝑝∗(𝑘), and 0
otherwise. This completes the proof of Lemma 3.1. ■

B. Proof of Lemma 3.2

By the Lemma 3.1, we can rewrite the condition (33) for
𝑝 = 𝑝∗(𝑘) as follows:

𝑈 ′
𝑘(�̄�𝑘)𝑟𝑘𝑝∗(𝑘) − 𝜆0

𝜒𝑝∗(𝑘)
= 0. (36)

The derivative for the generalized (𝑤,𝛼)-fair utility is given
by 𝑈 ′

𝑘(�̄�𝑘) = 𝑤𝑘/�̄�
𝛼
𝑘 = 𝑤𝑘/(𝜋𝑘𝑝∗(𝑘)𝑟𝑘𝑝∗(𝑘))

𝛼. Substituting
this derivative into (36) yields the following optimal fraction
of time for user-patterns:

𝜋𝑘𝑝∗(𝑘) =
(
𝑤𝑘𝜒𝑝∗(𝑘)𝑟

1−𝛼
𝑘𝑝∗(𝑘)/𝜆0

)1/𝛼
. (37)

Since 𝜋𝑘𝑝 = 0 for 𝑝 ∕= 𝑝∗(𝑘), we can rewrite the condition
(32) as follows:∑

𝑝∈𝒫1

∑
𝑘∈𝒦1

𝜋𝑘𝑝

𝜒𝑝
− 1 =

∑
𝑝∈𝒫1

∑
𝑘∈𝒦1𝑝

𝜋𝑘𝑝

𝜒𝑝
− 1 = 0, (38)

where 𝒦1𝑝 is the set of users whose most effective pattern
having the highest effective rate is 𝑝, i.e., 𝑝 = 𝑝∗(𝑘) =
argmax𝑝 𝜒𝑝𝑟𝑘𝑝 if 𝑘 ∈ 𝒦1𝑝. By plugging (37) into (38), we
can have the optimal value of 𝜆0:

𝜆0 =
( ∑
𝑝∈𝒫1

∑
𝑘∈𝒦1𝑝

𝑤
1/𝛼
𝑘 𝜒

1−𝛼
𝛼

𝑝∗(𝑘)𝑟
1−𝛼
𝛼

𝑘𝑝∗(𝑘)

)𝛼
. (39)

This completes the proof of Lemma 3.2. ■

C. Proof of Lemma 3.4

For the given pattern 𝑝, i.e., 𝑋𝑝(𝑡) = 1, we can rewrite (15)
as follows,

Δ𝑈(𝑡) =
∑
𝑛∈𝒩

∑
𝑘∈𝒦𝑛

𝑈 ′
𝑘(�̄�𝑘(𝑡− 1))𝐼𝑘(𝑡)𝑟𝑘𝑝(𝑡)

=
∑
𝑛∈𝒩𝑝

∑
𝑘∈𝒦𝑛

𝑈 ′
𝑘(�̄�𝑘(𝑡− 1))𝐼𝑘(𝑡)𝑟𝑘𝑝(𝑡)

=
∑
𝑛∈𝒩𝑝

Δ𝑈𝑛(𝑡),

where the second equality holds from (2), 𝐼𝑘(𝑡) = 0, 𝑛 /∈
𝒩𝑝 and Δ𝑈𝑛(𝑡) =

∑
𝑘∈𝒦𝑛

𝑈 ′
𝑘(�̄�𝑘(𝑡 − 1))𝐼𝑘(𝑡)𝑟𝑘𝑝(𝑡). As

𝑈 ′
𝑘(�̄�𝑘(𝑡 − 1)) and 𝑟𝑘𝑝(𝑡) are given parameters at slot 𝑡, we

only have to investigate decencies among 𝐼𝑘(𝑡). Since the
constraints (2) on 𝐼𝑘(𝑡) do not play a role across different BSs,
Δ𝑈𝑛(𝑡) are mutually independent. Therefore, solving the orig-
inal problem is equivalent to maximize Δ𝑈𝑛(𝑡) independently
for each BS 𝑛 ∈ 𝒩𝑝.

max
I(𝑡)

Δ𝑈𝑛(𝑡) =
∑
𝑘∈𝒦𝑛

𝑈 ′
𝑘(�̄�𝑘(𝑡− 1))𝐼𝑘(𝑡)𝑟𝑘𝑝(𝑡)

subject to
∑
𝑘∈𝒦𝑛

𝐼𝑘(𝑡) ≤ 1,

This problem can be further simplified as (18), which com-
pletes the proof of Lemma 3.4. ■
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