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Abstract— Differential equation models for Internet congestion
control algorithms have been widely used to understand network
dynamics and the design of router algorithms. These models use
a fluid approximation for user data traffic, and describe the dy-
namics of the router queue and user adaptation through coupled
differential equations. The interaction between the routers and
flows occurs through marking, where routers indicate congestion
by appropriately marking packets during congestion.

In this paper, we show that the randomness due to short and
unresponsive flows in the Internet is sufficient to decouple the
dynamics of the router queues from those of the end controllers.
This implies that a time-scale decomposition naturally occurs
such that the dynamics of the router manifest only through
their statistical steady-statebehavior. We show that this time-
scale decomposition implies that a queue-length based marking
function (e.g., RED-like and REM-like algorithms, which have
no queue averaging, but depend only on the instantaneous queue
length) has an equivalent form which depends only on the data
arrival rate from the end-systems and does not depend on the
queue dynamics. This leads to much simpler dynamics of the
differential equation models (there is no queueing dynamics to
consider), which enables easier analysis and could be potentially
used for low complexity fast simulation.

Using packet based simulations, we study queue based marking
schemes and their equivalent rate based marking schemes for
different types of controlled sources (proportional fair and TCP)
and queue based marking schemes. Our results indicate a good
match in the rates observed at the intermediate router with the
queue based marking function and the corresponding rate based
approximation. Further, the window size distributions of a typical
TCP flow with a queue based marking function as well as the
equivalent rate based marking function match closely, indicating
that replacing a queue based marking function by its equivalent
rate based function does not statistically affect the end host’s
behavior.

Index Terms— Internet congestion control, time-scale decom-
position, marking functions

I. I NTRODUCTION

W E consider the problem of Internet congestion control
when the network is accessed by a mixture of long-

lived controlled flows, as well as short-flows which do not
react to congestion. The short flows model a mixture of real-
time based traffic (such as real-time multimedia) as well as
web traffic (so called web-mice), where the sessions are too
short for the end systems to react to network congestion.

The transmission rate of the long-lived flows are controlled
by the intermediate routers in the network. The task of these
routers is to simply notify the end systems whenever they
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detect congestion in the network. Associated with each router
is a marking function, whichmarks a fraction of the flow,
and the fraction that is marked is a function of the arrival
rate (rate based marking) or the queue length (queue based
marking). In the Internet, marking is implemented via the
Explicit Congestion Notification (ECN) mechanism [1], where
packets have a bit in the header that can be set to ’1’ to
indicate congestion. The end-host reacts to this information
by suitably adapting its transmission rate, thus adapting to
network congestion.

There has been extensive research on differential equation
based congestion control [2]–[7], where fluid models of a large
number of flows were used to model the dynamics of the
system based on a rate based marking scheme. The source
controllers are modeled by differential equations (i.e., a fluid
model model for data flow). These controllers adapt their
transmission rate based on network feedback in the form of a
fraction of fluid that is marked by the routers. In other words,
with n flows in the network, the dynamics of the controller
are described by
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where w, κ are parameters of the controller that determine
the equilibrium rate as well as the transient dynamics.xi

n(t)
is the transmission rate of the controlled flowi at time t,
and

∑
i ai

n(t) represents the short-lived uncontrolled flows.
Ui(x) is an concave utility function of the useri, when
the transmission rate of the useri is x. Examples of such
utility functions include log x (proportional fair controller)
and−1/x (TCP controller) [8]. The functionpr(·) is a rate
based markingfunction whose argument isthe average arrival
rate to the router(additional discussion is available later in
this section). The marking function indicates the level of
congestion at the router. Thus,pr(·) is a monotone, increasing
function with range[0, 1]. The larger the marking level is, the
higher is the perceived congestion at the router. As seen in
(1), the controller reacts to a congestion level by decreasing
the transmission rate.

Alternately, instead of adapting based on the average arrival
rate, the marking function at the router can adapt based on
the queue length at the router.In other words, the router is
associated with aqueue based markingfunction pq(·). This
is assumed to be a monotone increasing function over[0, 1],
and Lipschitz continuous with parameterLq. The associated
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differential equation model for the end-system controller is
given by

ẋi
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if Qn(t) = 0.

Qn(t) is the queue length at the router, andnc is the capacity
of the link. Examples of queue based marking include Random
Early Discard (RED) [1], Adaptive Virtual Queue (AVQ) [9],
and Random Exponential Marking (REM) [10].

It has been shown in [6] that the differential equation based
models described in (1) and (2) are valid models of in the
Internet when there are large enough number of flows and the
network capacity is large (scaled with the number of flows).
In such a regime, the arguments of the marking functions
are interpreted as theaverage arrival rate(averaging by the
number of flows) or thescaled queue length(scaled by the
number of flows) respectively. Physically, this scaling of the
arguments correspond to the fact that the arrival rates and
capacity are large, see [6] for details.

In other words, for a network model withn flows and
the capacity at the router beingnc, the marking function
at the router adapts either based on the average arrival rate
x(t) = 1

nXn(t), whereXn(t) is the total arrival rate to the
router, or based on the average queue lengthq(t) = 1

nQn(t),
whereQn(t) is the queue length at the router. In particular,
this implies thatas the system size becomes larger, so does the
associated queue length at the router. In other words, a finite
non-zero queue length in the fluid differential equation model
(2) indicates that theactualqueue length in the router is large
(of ordern). Related work with a similar scaling (large buffer
and capacity) for window based control is available in [11].

However, as link speeds in modern and future commu-
nication networks is becoming higher, high-speed memory
buffer with high cost is required in the design of such
networks. Therefore, it is questionable if the queue buffers
at intermediate routers need toscale linearlywith the number
of flows [12]. In [12], [13], the authors have in fact shown that
buffers need not scale with the link speed in order to achieve
significant multiplexing gains.

In this paper, we focus on this regime where the queue
length does not scale with the number of flows. Such a
behavior occurs, for instance, if the queue based marking
function pq(·) is invariant with the number of flows andis
a function of the actual queue length, not the average queue
length.Under such a regime, the queue dynamics occur on a
much faster time-scale than that of the end system controller
[14]. In this context, it is reasonable to expect that queueing
dynamics are not visible to the end system controller. Instead,

the queueing behavior at the router affects the end system
controller only through the statistical behavior of the queue.

Recent related work includes [15], where the authors con-
sider a discrete time framework for congestion control. They
have shown that depending on the scaling, the limiting system
could be a combination of queue and rate based marking, even
if the unscaled system consists of only queue based marking.
In our paper, we consider a continuous time framework, where
we are primarily interested in a pure rate based approximation
to a queue based marking function. Our focus is on deriving
the equivalent rate based marking function over a continuous-
time framework, and studying network dynamics by replacing
a queue based marking function (such as RED or REM) with
an equivalent rate based one. Further, the proof techniques
employed are very different in the two approaches.

A. Main Contributions and Organization

The main contributions of this paper are the following:

(i) This paper quantifies the heuristics based on time-scale
separation by showing that under suitable assumptions,
queue based marking (based on instantaneous queue
length) and the associated queueing dynamics can be
approximated by a rate based marking function given by

p(x) , Eπc−x
λ

[pq(Q)],

whereπµ
λ is the stationary queue-length distribution of an

M/D/1 queue with Poisson arrival rateλ and capacityµ.
The parameterx andλ is simply the average arrival rate
from the controlled and the uncontrolled flows (averaging
over flows, not time) to the router queue, respectively.

(ii) Using packet simulations by suitably modifying thens-
2 [16] simulator, we compare queue based marking
schemes and their equivalent rate based marking schemes
for different types of controlled sources (proportional fair
and TCP) and queue based marking schemes (RED-like
and REM-like algorithms without queue averaging). In
addition, we show that the equivalent rate based marking
scheme behaves well even when drastic changes occur
in the number of network connections. The simulation
results indicate a good match between the queue based
marking and the equivalent rate based marking in the
steady-states as well as the transient behaviors of end-
sources.

The results of this paper potentially could enable low
complexity simulation and easier analysis for the following
reasons. In the context of network simulation, several widely-
used discrete event-driven simulators are available [16]–[19].
However, with a large number of flows the number of events
at an intermediate router scales with the number of flows due
to packet arrivals/departures and marking computation events.
The equivalent rate based model proposed in this paper uses a
marking averaged by rates, along with the absence of queuing
dynamics to enable a simulation complexity at intermediate
routers that does not scale with the number of flows, leading to
significant reduction of simulation complexity (see Section III-
C for additional discussion).
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Fig. 1. System model

Also, much of the work on stability analysis of congestion
control algorithm has been done based on the rate based
marking model at the intermediate routers. Thus, with our
approximate rate based model, it seems easier to study queue
based marking systems using analytical tools developed for
rate based marking in literature [4], [6], [20].

In the rest of this paper, we begin with a description of
the system model in Section II. Next, in Section III, we show
that there exists an equivalent rate based marking function
for a given queue based marking scheme (under suitable
conditions). Using these results, we derive expressions for the
equivalent marking function with the RED-like and the REM-
like controllers1 in section III-D. We finally present simulation
results for RED and REM with proportional fair and TCP
sources.

II. SYSTEM MODEL

Consider the system shown in Figure 1. We consider a
single queue with the FIFO (First In First Out) scheduling
discipline accessed by two types of flows:(i) controlled flows
and(ii) uncontrolled flows. We consider a sequence of systems
indexed by n, the scaling parameter. In then-th system,
the queue is fed byn independent, identically distributed
uncontrolled flows and byn controlled flows determined by
a congestion control algorithm2. The output capacity of the
router queue scaled withn asnc pkts/sec.

For then-th system, we model each uncontrolled flow by
means of a point processAi

n(t), that represents the cumulative
number of packets from flowi that arrive until time t.
We assume that eachAi

n(t) has the same distribution as a
simple stationary point processA that satisfies the following
assumptions [12], [21].

Assumption 2.1:A is a simple stationary point process
satisfying the following three properties.

(i) There existsλ > 0 such thatE[A(t)] = λt for t ∈ [0,∞).
(ii) There existsθ0 > 0 andK < ∞ such that

lim
t→0+

E[eθ0A(t)1A(t)>K ] = 0,

where1E = 1 if the predicateE is true, and0 otherwise.

1Henceforth, for notional convenience we use the terms RED and REM to
refer to queue based RED and REM without queue averaging.

2For notational simplicity, we have assumed an equal number of controlled
and uncontrolled sources. The results in this paper hold even if they are not the
same, as long as the ratio of the number of controlled flows and the number
of uncontrolled flows is finite.

(iii) lim inft→∞
tΛ(x,t)
log t > 0, whereΛ(x, t) = supθ∈R[θx −

1
t log E[eθA(t)]].

Assumption 2.1 states that each uncontrolled arrival process
satisfies the properties that(i) multiple packets from a single
uncontrolled source do not arrive at the same time,(ii) all
arriving packets are of the same size and(iii) the uncontrolled
arrival process has a finite intensity (see [12] for further
details).

From the controlled flows point of view, the system we have
described above can be thought of as a closed loop system with
delay, and feedback control applied at the routers based on
queue based marking functiondenoted bypq(·). A popular
modeling and analysis methodology for such closed-loop
systems in the Internet context has been through functional
differential equations basedfluid models.

The generic model of such a system consists of a collection
of user flows, a router modeled by marking functions which
signal congestion by marking flows, and receivers which detect
the marks and informs the respective flows to increase or
decrease their transmission rate. We model flows by fluid
processes. We denote the fluid rates of individual flows in the
n-th system by{xi

n(t), i = 1, . . . , n}, where xi
n(t) denotes

the transmission rate of a controlled flowi at time t. The
dynamics of the transmission rate for each user are governed
by a differential equation based controller as discussed in
Section I. We comment that the controller in (2) is called
a proportional-fair controller ifU(x) = log(x) [14], as
controllers of this form lead to a proportionally-fair allocation
of bandwidth across users. The results in this paper, however,
apply to any differential equation based congestion controller
as long asẋi

n(·) is bounded (i.e., the transmission rate is
Lipschitz). In particular, suppose that the transmission rate
xi

n(·) is bounded by some constantL. This in-turn implies that
xi

n(·) is Lipschitz continuous with some parameterM < ∞
[22]. In the rest of this paper, we assume that the transmission
rate is Lipschitz continuous with parameterM.

Let An(t) =
∑

i Ai
n(t) be the cumulative number of

arrivals until time t due touncontrolled flows,and Xn(t) =∑
i xi

n(t) be the totalarrival rate at time t due to controlled
flows. From Assumption 2.1,E(An(t)) = nλt.

For the controlled flows,let us denote the average arrival
rate by

xn(t) =
1
n

Xn(t).

Further, we define the total volume of arrivals (due to the
controlled flows) until timet by Yn(t), where

Yn(t) =
∫ t

0

Xn(z)dz = n

∫ t

0

xn(z)dz

Finally, we assume that the initial conditions satisfy

xi
n(0) n→∞−−−−→ xi(0)

xn(0) n→∞−−−−→ x(0)
Qn(0) n→∞−−−−→ Q(0) < ∞

x(0) + λ < c (3)

Heuristically, these conditions correspond to the assumption
that the initial condition is well defined, and is a stable system.
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III. L IMITING RATE BASED MARKING FUNCTION

In this section, we will derive the equivalent rate based
marking function for a given queue based marking function. In
this paper, we focus on the instantaneous queue length process.
Note that popular AQM algorithms such as RED and REM
use (exponentially moving) average queue length to mark the
incoming packets. We left the study on AQM algorithms with
queue averaging as future work.

For a fixedT > 0, we are interested in studying the queue
length process (which measures the volume of data at the
router), denoted byQn(t), over the time-interval[0, T

n ]. Thus,
we are interested in the queueing behavior at the router over a
short interval of time. Even over this small time interval, we
will show that the queue reaches “steady-state” behavior. This
occurs due to the fact that the capacity is very large (nc), and
causes the queue to “regenerate” an arbitrarily large number
of times over the interval[0, T

n ].
However, from a singleend-system(the user) point of view,

this corresponds to a very short interval of time. Thus, one
can expect that the end-user will only perceive the statistical
“steady-state” queueing behavior. The results in this section
quantify the above heuristic.

For anys ∈ [0, T
n ], the queue length process is given by

Qn(s) = sup
r∈[0,s]

[
An(s)−An(r)+

Yn(s)− Yn(r)− nc(s− r) + Qn(r)
]

= sup
r∈[0,s]

[
An(s)−An(r)+

n

∫ s

r

xn(z) dz − nc(s− r) + Qn(r)
]

Now, let us study the processes(Xn, Yn, An, Qn) over a
slowed-downtime-scale. In other words, fort ∈ [0, T ], we
define the processes

qn(t) , Qn

(
t

n

)
, an(t) , An

(
t

n

)
, yn(t) , Yn

(
t

n

)

Thus, we have for anyt ∈ [0, T ],

qn(t) = Qn

( t

n

)

= sup
r
n∈[0, t

n ]

[
An

(
t

n

)
−An

( r

n

)
+ Yn

(
t

n

)
−

Yn

( r

n

)
− nc(t− r)

n
+ Qn

( r

n

) ]

= sup
r∈[0,t]

[an(t)− an(r) +

yn(t)− yn(r)− c(t− r) + qn(r)] (4)

By assumption, each individual data rate (xi
n(t)) is Lipschitz

continuous with some parameterM < ∞. This also implies
that the average data rate (xn(r)) is Lipschitz continuous with
parameterM. Let us now define

q̃n(t) , sup
r∈[0,t]

[an(t)− an(r)

+ (t− r)x(0)− c(t− r) + q̃n(r)] (5)

A. Convergence of the Queue length Trajectory

We now show that the queue length process over the slowed-
down time-scale converges weakly to the queue length process
of a M/D/1 queue with service ratec − x(0). In [12], the
authors showed a similar result for the stationary distribution
of the queue. In this paper, we are interested in thepath
properties of the queuebecause the marks received by the
end-user depends on the integral of the marking function over
the (unscaled) time interval[0, T/n]. Thus, it is not sufficient
for us to consider only the stationary distribution. We show
that the slowed-down queue length process converges to the
corresponding M/D/1 queueing process “uniformly” (to be
precise, with respect to the Skorohod metric) over the time
interval [0, T ].

Prior to presenting the main theorems, we first provide the
following two lemmas.

Lemma 3.1:Givenε > 0, we can findN such that∀n > N,

||qn(t)− q̃n(t)|| < ε, (6)

where|| · || is the Skorohod metric [23] in the spaceD([0, T ] :
R+).

Proof: The proof is presented in the Appendix.
Lemma 3.2:Suppose thatan(t) → a(t) in the space

D([0, T ] : R+). Then, given anyε > 0, there existsN such
that ∀n > N we have

||q(t)− q̃n(t)|| < ε, (7)

whereq(t) is defined by

q(t) , sup
r∈[0,t]

[a(t)− a(r)

+ (t− r)x(0)− c(t− r) + q(r)], (8)

anda(t) is a Poisson process with arrival rateλ.
Proof: The proof is presented in the Appendix.

Theorem 3.1:As n →∞, we have

qn(t) w→ q(t), t ∈ [0, T ] over D([0, T ] : R+)

where
w→ represents weak convergence, andq(t) is the queue-

length process of a single server M/D/1 queue, with determin-
istic service ratec − x(0), and arrival processa(t), which is
a Poisson process of rateλ.

Proof: From the superposition theorem for point pro-
cesses [21], we know thatan converges weakly to a Poisson
process with rateλ denoted bya(t) in D([0, T ] : R+).
From the Skorohod representation theorem [23], we can find
processesa′n(t) anda′(t) in D([0, T ] : R+) such that

an(t) dist= a′n(t)
a(t) dist= a′(t),

where
dist= means “equivalence in distribution” and

||a′n(t)− a′(t)|| n→∞−−−−→ 0 in D([0, T ] : R+) (9)

Corresponding to the arrival processesa′(t) anda′n(t), let us
define q(t), q′n(t), and q̃′n(t) by Equations (4), (5), and (8)
respectively.
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Then, it suffices to prove that∀ε > 0, we can findN such
that∀n > N, ||q′n(t)−q′(t)|| < ε in the spaceD([0, T ] : R+).
By the triangle inequality of Skorohod norm, we have

||q′n(t)− q′(t)|| ≤ ||q′n(t)− q̃′n(t)||+ ||q̃′n(t)− q′(t)||
By applying Lemma 3.1 to the first term of RHS and
Lemma 3.2 to the second term of RHS, the result follows.

Using this result, we now show that the total volume of
marks received over the (slowed-down) time-interval[0, T ]
converges that given by an M/D/1 queue.

Theorem 3.2:Suppose that

qn(t) w→ q(t), t ∈ [0, T ] over D([0, T ] : R+),

whereqn(t) andq(t) is defined as (4) and (8). Then, we have
∫ T

0

pq(qn(y)) dy
w→

∫ T

0

pq(q(y)) dy (10)

∫ T

0

xi
n

( y

n

)
pq(qn(y)) dy

w→
∫ T

0

xi(0)pq(q(y)) dy(11)

Proof: From Theorem 3.1 and Skorohod representation
theorem, we can findq′n andq′ in D([0, T ] : R+) such thatq′n
converges toq′ in the Skorohod topology. By the definition of
convergence in the Skorohod topology, we can find a strictly
increasing, continuous functionλn of [0, T ] onto itself and
N1 > 0 such that for a givenε > 0, and∀n > N1,

sup
t∈[0,T ]

|q′n(λn(t))− q′(t)| < ε

sup
t∈[0,T ]

|λn(t)− t| < ε (12)

By adding and subtracting a common term, we have
∣∣∣∣∣
∫ T

0

pq(q′n(y)) dy −
∫ T

0

pq(q′(y)) dy

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ T

0

pq(q′n(y)) dy −
∫ T

0

pq(q′n(λn(y))) dy

∣∣∣∣∣

+

∣∣∣∣∣
∫ T

0

pq(q′n(λn(y))) dy −
∫ T

0

pq(q′(y)) dy

∣∣∣∣∣
For the second term of RHS, using Lipschitz continuity
assumption ofpq and the condition (12),

∣∣∣∣∣
∫ T

0

pq(q′n(λn(y))) dy −
∫ T

0

pq(q′(y)) dy

∣∣∣∣∣

≤
∫ T

0

Lq|q′n(λn(y))− q′(y)| < LqTε, (13)

where0 < Lq < ∞ is the Lipschitz constant ofpq(·).
Next, for the first term of RHS, We know thatq′(s) ∈

D([0, T ] : R+) has a finite number of jumps denoted by
J (q′) < ∞, since the arrival process is a Poisson process
with a finite rate over the finite interval of time[0, T ]. From
the condition (12), we can findN2 > 0 such that∀n > N2,
J , J (q′n) = J (q′). Let us denote the jump times ofq′n(s)
by {tjn, j = 1, . . . , J}.

Now, we divide the entire interval[0, T ] into two sets of
intervals A1 and A2, where A1 = {Ij , [tjn − ε, tjn +

ε], j = 1, . . . , J} and A2 = [0, T ]\A1. By taking ε <
0.5min{t1n, t2n − t1n, . . . , T − tJn}, this ensures that there is
only one jump of the processes,q′n(λn(s)) and q′n(s) in the
interval Ij . From Lipschitz continuity ofpq, ∀s ∈ [0, T ],

|pq(q′n(λn(s)))− pq(q′n(s))| ≤ Lq|q′n(λn(s))− q′n(s)|
Let Nmax = max(N1, N2). Then,∀n > Nmax,

|q′n(λn(s))− q′n(s)| ≤
{

1 if s ∈ A1,

ε(c− x(0)) if s ∈ A2.

Thus,
∣∣∣∣
∫ T

0

pq (q′n(y)) dy −
∫ T

0

pq (q′n(λn(y))) dy

∣∣∣∣
≤

∣∣∣∣
∫

A1

pq (q′n(y)) dy −
∫

A1

pq (q′n(λn(y))) dy

∣∣∣∣
+

∣∣∣∣
∫

A2

pq (q′n(y)) dy −
∫

A2

pq (q′n(λn(y))) dy

∣∣∣∣
≤

∫

A1

∣∣pq (q′n(y))− pq(q′n(λn(y)))
∣∣ dy

+
∫

A2

∣∣pq (q′n(y))− pq(q′n(λn(y)))
∣∣ dy

≤ 2LqJε + Lq(c− x(0))ε(T − 2Jε)
= ε (2LqJ + Lq(c− x(0))(T − 2Jε)) (14)

Sinceε is arbitrary in (13) and (14), this completes the proof.
The proof of (11) is analogous.

B. An Equivalent Rate Based Marking Function

This section defines an equivalent rate based marking func-
tion based on Theorem 3.2 and Theorem 3.1. Let us consider
the marks received over the time-interval[0, T

n ] by some user
i. By definition, the marked volume of dataover this time-
interval is given by

∫ T
n

0

xi
n(y)pq(Qn(y))dy =

1
n

∫ T

0

xi
n(y/n)pq(qn(y))dy

Thus, the time-average volume of marksreceived by useri
over the time-interval[0, T

n ] is

1
T/n

∫ T
n

0

xi
n(y)pq(Qn(y)) dy =

1
T

∫ T

0

xi
n(

y

n
)pq(qn(y)) dy (15)

Thus, from Theorem 3.2, we have

1
T/n

∫ T
n

0

xi
n(y)pq(Qn(y)) dy

n→∞−→

xi(0)
1
T

∫ T

0

pq(q(y)) dy, (16)

where q(y) is the queue-length process of an M/D/1 queue
with Poisson arrival rateλ and capacityc−x(0). Let us define

pT (x(0)) , 1
T

∫ T

0

pq(q(y)) dy. (17)
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For n large enough, we see from (16) that the interaction be-
tween the router queuing process and the congestion controller
at a fixed user occursonly throughthis functionpT (·).

Further, we observe thatq(y) is a regenerative process when
λ

c−x < 1 and x < c. Thus, from the ergodic theorem for a
regenerative process [24] and Smith’s theorem [25], for a given
ε > 0, ∃T0 such that∀T > T0,∣∣∣∣∣

1
T

∫ T

0

pq(q(y)) dy − Eπc−x
λ

[pq(Q)]

∣∣∣∣∣ < ε (18)

whereπµ
λ is the stationary distribution of an M/D/1 queue with

arrival rateλ and capacityµ.
For T large enough, and by defining

p(x) =

{
Eπc−x

λ
[pq(Q)] if λ

c−x < 1 and x < c,

1 if x ≥ c or λ
c−x ≥ 1.

(19)

we see from (17) and (18) that the congestion controller
dynamics with a queue based marking functionpq(·) can be
well approximated by anequivalentsystem with only a rate
based controllerp(x) at the router, wherex is simply the
average arrival rate from the controlled flows (averaging over
flows, not time) to the router queue.

Remark 3.1:We comment that for eachfixedT, asn →∞,
the limiting approximate model (19) holds. Thus, forT large
enough (but finite), we can be within anε bound of the time-
averaged limit ((18)). Physically, this corresponds to the time-
scale separation issue. In reality, we are interested in using
this approximation for a finiten (number of flows). Thus, the
time-scaleT should be chosen such that the following two
properties hold:(i) The time intervalT is large enough such
that the randomness due to uncontrolled flows enables the “law
of large numbers” to hold (i.e, the M/D/1 queue time-average
is close to the stationary distribution), and(ii) the time-interval
T/n is small enough such that the arrival rate from a user
(controlled flow) does not significantly change. Thus, for any
fixed ε > 0, we chooseT large enough such that the expected
value of the (queue based) marking function with an M/D/1
queue is “close” to the time-average. For this fixedT, we
can apply the limit theorem (inn) to justify the rate based
approximation.

If there is insufficient randomness in the network, the value
of T could be very large, thus requiring a large value ofn (i.e.,
large number of flows and large capacity) for our analysis to
hold. However, our simulations (see Section IV) indicate that
even with randomness generated due to short ON-OFF flows
which occupy about 20%-30% of the link capacity, the value
of n = 100 seems to be sufficient, and leads to a match within
5% between a queue based marking function and its equivalent
rate based model.

C. Application to Simulation Study

Over any fixed interval of time, the simulation complexity
at intermediate routers of a queue based simulation depends
on the number of events to process. As the number of flows
increases, the number of events (packet arrivals/departures,
marking probability computation) increases, thus leading to

Time Time

transmission rate
of a single controlled
end-user

intermediate router 
queue length

δ δ

small system scale
(small number of flows)

large system scale
(large number of flows)

Fig. 2. System scale size and time step size

increased simulation complexity. Also, the number of events
scales linearly with the number of intermediate routers.

On the other hand, the equivalent rate based model permits
the following implementation. Fix a small time-stepδ > 0
such that the arrival rate from a controlled flow does not
vary significantly over this time-step (i.e.,δ is inversely
proportional to the end-system congestion controller gain, see
Figure 2). For this fixedδ, suppose that the number of flows,
n, is large enough such that there is a sufficient amount of
randomness due to uncontrolled flows over this interval[0, δ]
(i.e., the Poisson approximation holds for the chosen value of
δ). Now at each equivalent rate based router, a computation
to determine the marking probability is performed only once
in each time-step sizeδ. Such a marking value is computed
at each intermediate router, and the packets from end-systems
are marked appropriately depending on the marking values.
Thus, marking computation required scales as1

δ × ni (ni is
the number of intermediate routers), and is invariant with the
number of flowsn. Further, such a rate based approximation
will become increasingly accurate as the system scale (n)
increases.

D. Examples: REM and RED

In this section, we derive the closed form of equivalent rate
based marking functions for the simplified REM and RED
controllers, which have no queue averaging, but depend only
on the instantaneous queue length.

1) REM: The simplified version used in this paper has the
following form of the queue based marking function from [10].

prem
q (Q) = 1− e−αQ, (20)

whereα is a suitable constant pre-defined in the system, and
Q is thequeue lengthin the system.

First, from the P-K formula for stationary workloadV of
an M/D/1 queue [26], we have

E[e−sV ] =
1− ρ

1− λ
s (1− e−s/µ)

, (21)

whereµ is the service rate,λ is the arrival rate, andρ = λ/µ.

Further, for the fluid queueing system we consider, it follows
from the definition of workload [26] thatV = Q/c. Thus, we
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10*100 pkts/sec

100*100 pkts/sec

5 msec

(90 or 40) msec

Sources Sinks

10*100 pkts/sec
5 msec

Fig. 3. Simulation topology

have

p(x) = Eπc−x
λ

[prem
q (Q)]

= Eπc−x
λ

[1− e−αcV ]

= 1− 1− ρ

1− λ
αc

(
1− e−αc/(c−x)

) , (22)

whereρ = λ
c−x . In the next section, we compare simulation

results with queue based marking with REM and compare that
to numerical results using its equivalent rate based marking
function given by (22).

2) RED: The simplified queue based marking function of
RED controller is defined as

pred
q (Q) = max

((
Q− a

b

)+

, 1

)
, (23)

wherea and b are suitable constants pre-defined at the inter-
mediate router [1]. Thus, we have

p(x) = Eπc−x
λ

[pred
q (Q)]

= Eπc−x
λ

[
max

((
Q− a

b

)+

, 1

)]

=
∫ a+b

a

(
q − a

b

)
fQ(q) dq

+Pr(Q > a + b), (24)

In order to evaluate (24), it suffices to determine the distribu-
tion of the random variableQ. We know that

Pr(Q > y) = Pr(V >
y

c
)

From [27], [28], the unfinished workU for a Poisson process
with arrival rateλ in the system with service rateµ has a
steady state distribution of the form

Pr(U > x) = 1− (1− ρ)eρxQbxc(x− bxc), (25)

where{Qn(x), n = 0, 1, · · · } are polynomial functions (which
can be calculated recursively as shown in [27], [28]), andρ =
λ/µ. From the definition ofU andV, we haveU = µV. Thus,

Pr(Q > y) = Pr(V >
y

c
)

= Pr

(
U >

y(c− x)
c

)
(26)

From (25) and (26), we can evaluate (24).

IV. SIMULATION

In the previous section, we showed that the queue based
marking and the associated queueing dynamics can be approx-
imated by a rate based marking function under the fluid model.
In this section, we use thens-2 [16] simulator to validate our
results. The simulation results in this section show that both
the steady-state behavior as well as the transients of the end
sources have a good match between the queue based marking
and the equivalent rate based marking.

A. Simulation Environment

The network topology used in the simulation is shown in
Figure 3. In Figure 3, the bottle-neck link is accessed by
100 controlled and 100 uncontrolled flows and its bandwidth
is set to be100 × 100 pkts/sec. We set the packet size to
be 1000 bytes for controlled and uncontrolled sources in
all simulations. The bandwidth and the propagation delay of
each access link are set to be10 × 100 pkts/sec and 5 ms,
respectively. We use 90 msec and 40 msec as the propagation
delay of the bottle-neck link (200 msec and 100 msec round-
trip delay for the end sources). We assume that the bottle-neck
router has only marking functionality, i.e., there is no dropping
of the packets due to the buffer overflow (see Section IV-B
for additional discussion).

We use the equivalent marking functions for (simplified)
RED and REM described in section III-D as the AQM
schemes, and we use two kinds of controlled sources, namely,
(i) proportional fair controller [14](ii) TCP Sack ( [29]
suggests the use of TCP Sack or TCP NewReno for network
simulation and measurement). Proportional fair controlled
sourcei is described by the following difference equation:

xi[k + 1] = xi
n[k] + uκ

(
w − xi[k − d]pq (Q[k − d])

)
,

whereu is the update interval, andd is the round-tip propaga-
tion delay. In our simulation, the update of the source rate
is implemented by replacingxi

n[k − d]pq (Qn[k − d]) with
Nk, the actual number of marks received over the update
interval u. In our simulations,w and κ are set to be 5.5
and 1, respectively. In addition, we use a value of200 msec
as the update interval. All sources are started with small
time differences in order to eliminate synchronization effects
between the end-user systems. For notational convenience, we
call the queue based RED (REM) as QRED (QREM) and
the equivalent rate based marking scheme as RRED (RREM),
respectively. In the simulations, we have used the following
parameters for RED and REM:α = 0.02 anda = 10, b = 30.

The uncontrolled flows are modeled by ON-OFF processes
[30], where the ON and OFF periods are exponentially dis-
tributed with parameter100 msec or200 msec (denoted by
ON-OFF(0.1) and ON-OFF(0.2)) and the packet transmission
rate in the ON period is suitably set to be constant so that
the total load due to the uncontrolled flows is a fixed fraction
of the link capacity. We denote the average load due to a
uncontrolled flow byλ pkts/sec in the simulation results.

We have two kinds of figures (throughput for both sources
and additionally congestion window size for TCP sources) to
validate the equivalent rate based marking function proposed



8

20 30 40 50 60 70 80 90 100
Time (sec)

0
10
20
30
40
50
60
70
80
90

100
R

at
e 

(p
kt

s/
se

c)
QREM
RREM

20 30 40 50 60 70 80 90 100
Time (sec)

0
10
20
30
40
50
60
70
80
90

100

R
at

e 
(p

kt
s/

se
c)

QREM
RREM

20 30 40 50 60 70 80 90 100
Time (sec)

0
10
20
30
40
50
60
70
80
90

100

R
at

e 
(p

kt
s/

se
c)

QREM
RREM

(a) λ = 50, ON-OFF(0.1), rtt = 200 msec (b)λ = 35, ON-OFF(0.2), rtt = 200 msec (c)λ = 35, ON-OFF(0.2), rtt = 100 msec

Fig. 4. Throughput of proportional fair source with REM
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Fig. 5. Throughput of proportional fair source with RED
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Fig. 6. Throughput of TCP with REM
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Fig. 7. Throughput of TCP with RED

in this paper. In the figures titled “throughput” (see Figures
4, 6, 5, 7, and 11), we measure and plot the aggregate
instantaneous throughput (over all controlled sources) every
0.5 sec, average them over the number of controlled sources,
and plot the samples at one second intervals. In addition, we
also plot the average rate over (horizontal line in the figures).
In the figures for the congestion window size, we trace the
instantaneouscwnd (congestion window size) value of all
TCP sources, average them across the sources, (sampled every
1 second) and plot this as a time series (see Figures 8 and
9). Finally, we also present the complementary distribution
function of the congestion window size (cwnd) for a typical

flow under different network conditions (see Figure 10).

B. Implementation Issues

Prior to presenting the simulation results, we describe a
few implementation issues. In the simulations in this section,
we use a sliding window of time-step size to estimate the
arrival rate from controlled and uncontrolled sources at the
router. Time-step size is set to be 5 msec and the time-
interval of the sliding window is chosen to be the round-trip
time of the sources [31], i.e., the number of sliding window
slots is equal tortt/0.005. We estimate the arrival rate by
computing the instantaneous arrival rate over the time-step
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Fig. 8. Congestion window size of TCP with REM
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Fig. 9. Congestion window size of TCP with RED

size and averaging the sliding window length of current and
previous instantaneous arrival rates.

Further, the actual number of flows is not needed at the
router to compute the marking probability based on the
equivalent rate based marking function. Computing the total
controlled and uncontrolled rates (as opposed to the average
arrival rate) is sufficient as the equivalent marking function is
automatically “normalized.”

In the simulations, the buffer size (also called queue limit) is
set to be sufficiently large such that only marking functionality
affects the transmission rate of controlled flows, i.e., physical
dropping of the arriving packets does not occur due to queue
overflow.

In practice, however, packet drops could occur due to finite
buffers at routers. The equivalent rate based model in this
paper can be extended to such a finite queue length system by
adding an equivalent rate baseddropping function(thus the
intermediate router has a pair of probability(pm, pd), where
pm and pd are marking and dropping probability computed
based on the equivalent rate based model), since the dropping
function for a finite size of queue in a queue based system
is a step function. Further, this model can be extended to
more complicated queue based dropping function (e.g., RED)
than a step function. However, in this paper, we restrict to an
intermediate router with only marking functionality.

C. Experiment 1: Proportional Fair Controller

Figures 4 and 5 show the average (over flows) instantaneous
throughput as well as the long-term average over the entire
simulation time (straight horizontal line in the figures) for
the REM and RED controllers. As probabilistic marking is
employed at the router (with both queue based and equiv-
alent rate based marking), the starting times of flows and
transmission pattern of uncontrolled flows are randomized, the

instantaneous rates will not be identical in a path-wise sense.
However, a good match between the two schemes implies that
the statistical behavior should be close to each other.

Both figures include the results for different network pa-
rameters such as the round-trip time, the load of uncontrolled
flows, and the burstiness of uncontrolled flows. Through these
results, we can compare the long-term behavior of a queue
based and a rate based scheme. The results show that there
is about less then 5% difference between the rate based and
the queue based scheme. Further, the instantaneous rate show
similar statistical path behavior.

In this simulation, the arrival rate could exceed the service
capacity. In this situation, while the equivalent rate based
marking marks all the packet, not all packets are marked in
the practical packet systems. In addition to the Poisson ap-
proximation, we posit that one of the reasons for performance
difference between the rate based model and the queue based
model is due to this reason.

However, if the system scale is large enough, this effect
becomes small for the following reason: when the arrival rate
exceeds the capacity, the queue-length increases, leading to an
unstable queue. Thus, as the system scale increases (indexed
by n), the queue length is of ordern, and thus an increasingly
large fraction of the incoming packets will be marked (as
the marking function is unscaled). This is supported by the
simulation results that even 100 controlled and uncontrolled
flows are enough to decrease the performance error to less
than 5%.

D. Experiment 2: TCP Controller

Figures 6 and 7 plot the throughput with the REM and
RED controllers respectively, and Figures 8 and 9 plot the
congestion windows (averaged over flows) as a time series.
Further, Figure 10 shows that complementary distribution
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Fig. 10. Congestion window size distribution of a typical TCP source with
RED: ON-OFF(0.1) and rtt = 200 msec

function of the congestion window for a typical TCP flow,
for two different loads and with the RED controller at the
router. The plots indicate that the window sizes are statistically
very similar for the queue based marking and the equivalent
rate based marking. Thus, this indicates that replacing a queue
based marking function by its equivalent rate based function
does not statistically affect the end host’s behavior.

E. Experiment 3: Sensitivity to Change of Network Connec-
tions

In this simulation, we study the sensitivity of the equiv-
alent rate based marking function to the change of network
connections. The simulation starts with 100 uncontrolled and
200 controlled sources. After 100 seconds, the number of
controlled sources is reduced to 100. Then from 200 seconds,
the number of uncontrolled sources increases to 150. The
bottle-neck bandwidth maintained at 100×100 pkts/sec and the
mean transmission rate of an uncontrolled source is sustained,
which means that the uncontrolled load after 200 sec is
changed to 75%. In Figure 11, we can see the robust behavior
of the proposed rate based marking function even with the
change of network connections.

V. CONCLUSION

In this paper, we have shown that the randomness due to
short and unresponsive flows in the Internet is sufficient to
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Fig. 11. Sensitivity to Change of Network Connections

decouple the dynamics of the router queues from those of the
end controllers. This implies that a time-scale decomposition
naturally occurs such that the dynamics of the router mani-
fest only through theirstatistical steady-statebehavior. This
time-scale decomposition implies that a queue-length based
marking function such as Random Early Detection (RED) or
Random Exponential Marking (REM) have anequivalentform
which dependonly on the data arrival rate from the end-
systems and do not depend on the queue dynamics. This leads
to much simpler dynamics of the differential equation models
(there is no queueing dynamics to consider), which enables
low complexity simulation and easier analysis.

Using packet based simulations, we have studied queue
based marking schemes and their equivalent rate based mark-
ing schemes for different types of controlled sources (propor-
tional fair and TCP) and marking schemes (RED and REM).
Our results indicate a good match in the rates observed at
the intermediate router with the queue based marking function
and the corresponding rate based approximation. Additionally,
the simulation complexity is reduced due to the absence of
queueing dynamics in the network simulation. Further, the
window size distributions of a typical TCP flow with a queue
based marking function as well as the equivalent rate based
marking function match closely, indicating that replacing a
queue based marking function by its equivalent rate based
function does not statistically affect the end host’s behavior.
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APPENDIX I
PROOF OFLEMMA 3.1

Proof: Let J , J(an) be the number of jumps (number
of arrivals) of the trajectoryan(t), t ∈ [0, T ]. It can be shown
that for n large enough,J < ∞ almost surely, sincean(·)
converges toa(.), a finite rate Poisson process, in the Skorohod
topology (thus, forn large enough, and over a compact time

interval, the number of arrivals inan(·) is the same as the
number of arrivals ina(·); see also the proof of Lemma 3.2).
Let {tjn, , tjn ≤ T, j = 1, 2, . . . , J} be the jump times,
respectively.

Next, let ξn(r) = yn(r)− x(0)r. Then, we have

|ξn(t)− ξn(r)| =
∣∣∣∣ n

∫ t/n

r/n

(xn(z)− xn(0)) dz

∣∣∣∣

≤
∣∣∣∣ n

∫ t/n

r/n

Mz dz

∣∣∣∣

=
nM

2

(( t

n

)2

−
( r

n

)2
)

=
M

n
(t2 − r2) (27)

Then, from the definition ofqn(t) and q̃n(t),

qn(t) = sup
r∈[0,t]

[an(t)− an(r) + x(0)(t− r) + ξn(t)

−ξn(r)− c(t− r) + qn(r)]
q̃n(t) = sup

r∈[0,t]

[an(t)− an(r) + (t− r)x(0)−
c(t− r) + q̃n(r)]

Let ∆q̃n(s) = |qn(s)− q̃n(s)|, s ∈ [0, T ]. Then, it suffices to
show that for givenε > 0, there existsN such that∀n > N,
we have

sup
s∈[0,T ]

∆q̃n(s) < ε,

since convergence with respect to uniform topology implies
convergence with respect to Skorohod topology.

Consider any two jump timestjn and tj+1
n . Then, we have

∆q̃n(tj+1
n ) ≤ ∆q̃n(tjn) + |ξn(tj+1

n )− ξn(tjn)|
≤ ∆q̃n(tjn) +

M

n
(tj+1

n + tjn)(tj+1
n − tjn)

≤ ∆q̃n(tjn) +
M

n
(2T )(tj+1

n − tjn)

Further, for anyzj
n ∈ [tjn, tj+1

n ],

∆q̃n(zj
n) ≤ ∆q̃n(tjn) +

M

n
(2T )(zj

n − tjn)

≤ q̃n(tjn) +
M

n
(2T )(tj+1

n − tjn) (28)

Thus, it is enough to check∆q̃n(s) when s ∈ {tjn, , tjn ≤
T, j = 1, 2, . . . , J}. Noting that∆q̃n(0) = 0 since q̃n(0) =
qn(0), we have

∆q̃n(t1n) ≤ M

n
2T (t1n − 0)

∆q̃n(t2n) ≤ M

n
2T (t1n − 0) +

M

n
2T (t2n − t1n)

=
M

n
2T (t2n)

. . .

By induction, we have

∆q̃n(tjn) ≤ M

n
2T (tjn)

≤ M

n
2T 2 (29)

From (28) and (29), the result follows.
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APPENDIX II
PROOF OFLEMMA 3.2

Proof: By definition of convergence in Skorohod topol-
ogy, for a given0 < δ < 1 and sufficient largen, we can find a
strictly increasing, continuous functionλn of [0, T ] onto itself
such that

sup
s∈[0,T ]

|an(λn(s))− a(s)| < δ

sup
s∈[0,T ]

|λn(s)− s| < δ, (30)

and forn large enough, we have

J , J (a) = J (an), (31)

whereJ (·) is the number of jumps over the spaceD([0, T ] :
R+). The fact thata(s), s ∈ [0, T ] is a Poisson process with
a finite rate ensures that we have a finite number of jumps
almost surely over the finite interval of time. In addition, as any
“extra jump” would lead to a distance of 1 which contradicts
condition (30), Equation (31) follows. Let us denote the arrival
times of a and an by {tj , j = 1, . . . , J} and {tjn, j =
1, . . . , J}, respectively. We know that the arrival times ofa(t)
(an(t)) are equivalent to the jump times ofq(t) (qn(t)). Also,
we know that

sup
1≤i≤J

|tin − ti| < δ,

for sufficient largen from (30). For a functionλn(s) satisfy-
ing (30), we choose a piece-wise linear function such that
λn(ti) = tin, i = 1, . . . , J. This construction implies that
λn(s) is a continuous and strictly increasing function over
the interval[0, T ]. To complete the proof, it suffices to show
that sups∈[0,T ] |qn(λn(s))− q(s)| is arbitrarily small. Let

∆qn(s) = |qn(λn(s))− q(s)|
Then, we have the following recurrence relation

∆qn(tj+1) ≤ ∆qn(tj) + δ(c− x(0)),

sinceqn(λn(s)) and q(s) has only one jump at timetj+1 in
the interval(tj , tj+1]. Thus, the queue size difference is only
that due to the amount of service with ratec− x(0) over the
time difference|λn(s)− s|. Further, for anyr ∈ [tj , tj+1], we
have

∆qn(r) = max[∆qn(tj),∆qn(tj+1)],

as theqn(·) and q(·) are piece-wise linear between jumps.
Thus, it is enough to check only the jump times of the process
q(s), s ∈ [0, T ]. Thus, definingt0 = 0, and choosingn large
enough such that|qn(0)− q(0)| < δ, we have

sup
s∈[0,T ]

|qn(λn(s))− q(s)| ≤ max
0≤j≤J

∆qn(tj)

≤ δ max{1, J(c− x(0))}
Choosingδ small enough, we are done.
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