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Abstract— Differential equation models for Internet congestion detect congestion in the network. Associated with each router
control algorithms have been widely used to understand network js a marking function, whichmarks a fraction of the flow,
dynamics and the design of router algorithms. These models use and the fraction that is marked is a function of the arrival

a fluid approximation for user data traffic, and describe the dy- .
namics of the router queue and user adaptation through coupled rate (rate based marking) or the queue length (queue based

differential equations. The interaction between the routers and Marking). In the Internet, marking is implemented via the

flows occurs through marking, where routers indicate congestion Explicit Congestion Notification (ECN) mechanism [1], where

by appropriately marking packets during congestion. packets have a bit in the header that can be set to '1’ to
In this paper, we show that the randomness due to short and j,jicate congestion. The end-host reacts to this information

unresponsive flows in the Internet is sufficient to decouple the b itably adanti its t o te. th dapting t
dynamics of the router queues from those of the end controllers, Y Sultably adapting Its transmission rate, thus adapting to

This implies that a time-scale decomposition naturally occurs Network congestion.
such that the dynamics of the router manifest only through There has been extensive research on differential equation

their statistical Steady-staté)ehaVIOI’ We show that this tlme- based Congesuon control [2]_[7]' where fluid models of a |arge
scale decomposition implies that a queue-length based marking number of flows were used to model the dynamics of the

function (e.g., RED-like and REM-like algorithms, which have based based Ki h h
no queue averaging, but depend only on the instantaneous queueSyStern ased on a rate based marking scheme. The source

length) has anequivalentform which dependsonly on the data controllers are modeled by differential equations (i.e., a fluid
arrival rate from the end-systems and does not depend on thmodel model for data flow). These controllers adapt their
queue dynamics This leads to much simpler dynamics of the transmission rate based on network feedback in the form of a

differential equation models (there is no queueing dynamics 10 ¢, ion of fluid that is marked by the routers. In other words,

consider), which enables easier analysis and could be potentially =’ : .
used for)low complexity fast simulatizn. P Y with n flows in the network, the dynamics of the controller

Using packet based simulations, we study queue based marking are described by
schemes and their equivalent rate based marking schemes for

different types of controlled sources (proportional fair and TCP) . _ ( o -1

and queue based marking schemes. Our results indicate a good i (t) = k(W = Uj(an(t))

match in the rates observed at the intermediate router with the 15 _

queue based marking function and the corresponding rate based Dr (— Z(aﬁl(t) + x%(t)))), i=1,---,n, (1)
approximation. Further, the window size distributions of a typical n =1

TCP flow with a queue based marking function as well as the
equivalent rate based marking function match closely, indicating where w, x are parameters of the controller that determine
that replacing a queue based markjng function by its equivalen’t the equilibrium rate as well as the transient dynamk;’;(.t)
Litﬁaegsred function does not statistically affect the end host's is the transmission rate of the controlled flawat time ¢,
' _ _ and ", a’,(t) represents the short-lived uncontrolled flows.
Ir]c_iex Term_s—lnternfst congestion control, time-scale decom- Ui(x) is an concave utility function of the user when
position, marking functions . ..
the transmission rate of the users z. Examples of such
utility functions includelogxz (proportional fair controller)
I. INTRODUCTION and —1/z (TCP controller) [8]. The functiom,.(-) is arate
E consider the problem of Internet congestion contr&ased markingunction whose argument tee average arrival
when the network is accessed by a mixture of |ongate to the router(additional discussion is available later in
lived controlled flows, as well as short-flows which do nothis section). The marking function indicates the level of
react to congestion. The short flows model a mixture of regiongestion at the router. Thys,(-) is @ monotone, increasing
time based traffic (such as real-time multimedia) as well dgnction with range0, 1]. The larger the marking level is, the
web traffic (so called web-mice), where the sessions are tdigher is the perceived congestion at the router. As seen in
short for the end systems to react to network congestion. (1), the controller reacts to a congestion level by decreasing
The transmission rate of the long-lived flows are controlleiiie transmission rate.
by the intermediate routers in the network. The task of theseAlternately, instead of adapting based on the average arrival

routers is to simply notify the end systems whenever thégte, the marking function at the router can adapt based on
the queue length at the routemn other words, the router is
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differential equation model for the end-system controller the queueing behavior at the router affects the end system
given by controller only through the statistical behavior of the queue.
Recent related work includes [15], where the authors con-
sider a discrete time framework for congestion control. They
have shown that depending on the scaling, the limiting system
could be a combination of queue and rate based marking, even
if the unscaled system consists of only queue based marking.
In our paper, we consider a continuous time framework, where
n we are primarily interested in a pure rate based approximation
Z(a{l(t) + xi(t)) —nc if Qn(t) >0, to a queue based marking function. Our focus is on deriving
the equivalent rate based marking function over a continuous-
n + time framework, and studying network dynamics by replacing
Z(a%(t) + x%(t)) —ne if Qn(t)=0. a queue based marking function (such as RED or REM) with
i=1 an equivalent rate based one. Further, the proof techniques
employed are very different in the two approaches.

< (w- vl 0 (30.0)) . @

where

Q. (t) is the queue length at the router, amdis the capacity

of the link. Examples of queue based marking include Random o o

Early Discard (RED) [1], Adaptive Virtual Queue (AVQ) [9], A- Main Contributions and Organization

and Random Exponential Marking (REM) [10]. _ The main contributions of this paper are the following:

It has been shown in [6] that the differential equation basegty tis paper quantifies the heuristics based on time-scale
models described in (1) and (2) are valid models of in the” gonaration by showing that under suitable assumptions,
Internet when there are large enough number of flows and the queue based marking (based on instantaneous queue
network capacity is large (scaled with the number of flows). length) and the associated queueing dynamics can be

In such a regime, the arguments of the marking functions approximated by a rate based marking function given by

are interpreted as thaverage arrival rate(averaging by the
number of flows) or thescaled queue lengtfscaled by the
number of flows) respectively. Physically, this scaling of the
arguments correspond to the fact that the arrival rates and
capacity are large, see [6] for details.

In other words, for a network model with flows and
the capacity at the router beingc, the marking function
at the router adapts either based on the average arrival rate

p(z) E e [pe(Q)],

wherer!' is the stationary queue-length distribution of an
M/D/1 queue with Poisson arrival raté and capacityj.
The parametex and A is simply the average arrival rate
from the controlled and the uncontrolled flows (averaging
over flows, not time) to the router queue, respectively.

z(t) = LX"(t), where X" (¢) is the total arrival rate to the (i) Using packet simulations by suitably modifying tms-

router, or based on the average queue leqgth= Q" (t),
where Q™ (t) is the queue length at the router. In particular,
this implies thatas the system size becomes larger, so does the
associated queue length at the routbr other words, a finite
non-zero queue length in the fluid differential equation model
(2) indicates that thactual queue length in the router is large
(of ordern). Related work with a similar scaling (large buffer
and capacity) for window based control is available in [11].

However, as link speeds in modern and future commu-
nication networks is becoming higher, high-speed memory
buffer with high cost is required in the design of such
networks. Therefore, it is questionable if the queue buffers
at intermediate routers needdoale linearlywith the number

2 [16] simulator, we compare queue based marking
schemes and their equivalent rate based marking schemes
for different types of controlled sources (proportional fair
and TCP) and queue based marking schemes (RED-like
and REM-like algorithms without queue averaging). In
addition, we show that the equivalent rate based marking
scheme behaves well even when drastic changes occur
in the number of network connections. The simulation
results indicate a good match between the queue based
marking and the equivalent rate based marking in the
steady-states as well as the transient behaviors of end-
sources.

The results of this paper potentially could enable low

of flows [12]. In [12], [13], the authors have in fact shown thatomplexity simulation and easier analysis for the following
buffers need not scale with the link speed in order to achieweasons. In the context of network simulation, several widely-

significant multiplexing gains.

used discrete event-driven simulators are available [16]-[19].

In this paper, we focus on this regime where the quetliowever, with a large number of flows the number of events
length does not scale with the number of flonSuch a at an intermediate router scales with the number of flows due

behavior occurs, for instance, if the queue based markitmpacket arrivals/departures and marking computation events.
function p,(-) is invariant with the number of flows and The equivalent rate based model proposed in this paper uses a
a function of the actual queue length, not the average quenmarking averaged by rates, along with the absence of queuing
length.Under such a regime, the queue dynamics occur ordgnamics to enable a simulation complexity at intermediate
much fastertime-scale than that of the end system controlleputers that does not scale with the number of flows, leading to
[14]. In this context, it is reasonable to expect that queueirsignificant reduction of simulation complexity (see Section IlI-
dynamics are not visible to the end system controller. Instedd for additional discussion).



T tA(2,t)
(i) liminf;_ Tog 7

1 log E[ef41]].
j Assumption 2.1 states that each uncontrolled arrival process

> 0, where A(z,t) = supger [z —

(,::I%’\]flrso”a{ (,El%’\‘,f,rso”ed satisfies the properties th@} multiple packets from a single
uncontrolled source do not arrive at the same tifii¢, all

arriving packets are of the same size iiijl the uncontrolled

gneontroll Uncontrolled  grrival process has a finite intensity (see [12] for further
ows Flows .
details).
From the controlled flows point of view, the system we have
Fig. 1. System model described above can be thought of as a closed loop system with

delay, and feedback control applied at the routers based on
queue based marking functiafenoted byp,(-). A popular

Also, much of the work on stability analysis of congestiofodeling and analysis methodology for such closed-loop
control algorithm has been done based on the rate bas¥gtems in the Internet context has been through functional
marking model at the intermediate routers. Thus, with o@ifferential equations baseftlid models
approximate rate based model, it seems easier to study queuEhe generic model of such a system consists of a collection
based marking systems using analytical tools developed ffruser flows, a router modeled by marking functions which
rate based marking in literature [4], [6], [20]. signal congestion by marking flows, and receivers which detect

In the rest of this paper, we begin with a description dhe marks and informs the respective flows to increase or
the system model in Section Il. Next, in Section Ill, we showecrease their transmission rate. We model flows by fluid
that there exists an equivalent rate based marking functiBfPcesses. We denote the fluid rates of individual flows in the
for a given queue based marking scheme (under suitabrh system by{z; (¢).i = 1,...,n}, wherea; (¢) denotes
conditions). Using these results, we derive expressions for #ig transmission rate of a controlled floivat time ¢. The
equivalent marking function with the RED-like and the REMdynamics of the transmission rate for each user are governed
like controllerg in section 111-D. We finally present simulation by & differential equation based controller as discussed in

results for RED and REM with proportional fair and TCFSection I. We comment that the controller in (2) is called
sources. a proportional-fair controller ifU(x) = log(z) [14], as

controllers of this form lead to a proportionally-fair allocation
of bandwidth across users. The results in this paper, however,

) o _apply to any differential equation based congestion controller
Consider the system shown in Figure 1. We consider @ |ong asii () is bounded (i.e., the transmission rate is

single queue with the FIFO (First In First Out) schedulingipschitz). In particular, suppose that the transmission rate
discipline accessed by two types of flow®: controlled flows zi () is bounded by some constaht This in-turn implies that
and(ii) uncontrolled flows. We consider a sequence of Systemps . js Lipschitz continuous with some paramefel < oo

. . ‘n

indexed byn, the scaling parameter. In the-th system, (551 | the rest of this paper, we assume that the transmission
the queue is fed byn independent, identically distributed e is Lipschitz continuous with parametef.

uncontrolled flows and by. controlled flows determined by | o A,(t) = Y, Ai(t) be the cumulative number of

a congestion control qlgoritk?mThe output capacity of the rivals until time ¢ due touncontrolled flowsand X, (t) =
router queue scaled with asnc pkis/sec. S, #i (t) be the totalarrival rate at time¢ due to controlled

K2

For then-th system, we model each uncontrolled flow b¥jqus From Assumption 2.1E(A,,(t)) = nAt.
means of a point process, (#), that represents the cumulative  gor the controlled flows let us denote the average arrival
number of packets frgm flow that arrive until timet. (410 by
We assume that eacH’ (t) has the same distribution as a
simple stationary point process that satisfies the following Tn(t) = an(t).
assumptions [12], [21]. n
Assumption 2.1:4 is a simple stationary point procesd-urther, we define the total volume of arrivals (due to the

Il. SYSTEM MODEL

satisfying the following three properties. controlled flows) until timet by Y, (¢), where
(i) There exists\ > 0 such thatE[A(t)] = At fort € [0, 00). t t
(i) There exists, > 0 and K < oo such that Ya(t) = /0 Xy (2)dz = “/0 T (2)dz
tli%g Ele"*W1,ox] = 0, Finally, we assume that the initial conditions satisfy
wherely = 1 if the predicateF is true, and) otherwise. 24 (0) = 2%(0)
r,(0) 2 2(0)
IHenceforth, for notional convenience we use the terms RED and REM to Qn(o) n—oo Q(O) < 00

refer to queue based RED and REM without queue averaging.
2For notational simplicity, we have assumed an equal number of controlled

and uncontrolled sources. The results in this paper hold even if they are notthe . . I h diti d h .
same, as long as the ratio of the number of controlled flows and the numbéguristically, these conditions correspond to the assumption

of uncontrolled flows is finite. that the initial condition is well defined, and is a stable system.

z(0) + A < c 3)



[1l. LIMITING RATE BASED MARKING FUNCTION A. Convergence of the Queue length Trajectory

In this section, we will derive the equivalent rate based We now show that the queue length process over the slowed-
marking function for a given queue based marking function. sown time-scale converges weakly to the queue length process
this paper, we focus on the instantaneous queue length proceésa M/D/1 queue with service rate — z(0). In [12], the
Note that popular AQM algorithms such as RED and REMuthors showed a similar result for the stationary distribution
use (exponentially moving) average queue length to mark the the queue. In this paper, we are interested in plagh
incoming packets. We left the study on AQM algorithms wittproperties of the queubdecause the marks received by the
gueue averaging as future work. end-user depends on the integral of the marking function over

For a fixedT > 0, we are interested in studying the queughe (unscaled) time intervad, 7'/n]. Thus, it is not sufficient
length process (which measures the volume of data at fie& us to consider only the stationary distribution. We show
router), denoted by, (t), over the time-intervalo, %]_ Thus, that the slowed-down queue length process converges to the
we are interested in the queueing behavior at the router ove¢airesponding M/D/1 queueing process “uniformly” (to be
short interval of time. Even over this small time interval, w@recise, with respect to the Skorohod metric) over the time
will show that the queue reaches “steady-state” behavior. Thigerval [0, T7.
occurs due to the fact that the capacity is very large,(and Prior to presenting the main theorems, we first provide the
causes the queue to “regenerate” an arbitrarily large numieffowing two lemmas.

of times over the interval0, Z]. Lemma 3.1:Givene > 0, we can findV such that/n > N,
However, from a singlend-systen(the user) point of view, . 6
this corresponds to a very short interval of time. Thus, one llan(®) =@ @Il < € 6

can expect that the end-user will only perceive the statistiqﬁhere” || is the Skorohod metric [23] in the spaf¥|0, T] :
“steady-state” queueing behavior. The results in this sectiw).

quantify the abong heuristic. o Proof: The proof is presented in the Appendix. m
For anys < [0, --], the queue length process is given by | emma 3.2:Suppose thata,(t) — a(t) in the space
D([0,T] : RT). Then, given any > 0, there existsN such

Qn(s) = Tz‘[lops] [An(s) — An(r)+ thatVn > N we have
Ya(8) = Ya(r) = me(s = 1) + Qu(r)| la(t) = @l < e (7)
- [An(s) — Ap(r)+ whereq(t) is defined by
n /S Tn(2)dz —ne(s —r) + Qn(r)} q(t) = sup [a(t) — a(r)
r r€(0,t]
Now, let us study the processéX,,Y,, A,,Q,) over a + (t—7)2(0) —c(t —7) +q(r)], (8)

slowed-downtime-scale. In other words, far € [0,7], we

define the processes anda(t) is a Poisson process with arrival rate

Proof: The proof is presented in the Appendix. m
() 2 Qn (t) () 2 A, (;) A, (t> Theorem 3.1:As n — oo, we have

n n w
) = q(t), te[0,T] over D([0,T]:R")
Thus, we have for any € [0, 77, w
where— represents weak convergence, afd is the queue-

) = Qn(f) length process of a single server M/D/1 queue, with determin-
n istic service ratec — 2(0), and arrival process(t), which is
-  sup |:An (t) — A, (ﬁ) 1Y, <t) _ a Poisson process of rate
zelo, L n n n Proof: From the superposition theorem for point pro-
r ne(t —r) r cesses [21], we know that, converges weakly to a Poisson
Yo (*) T, +@n (g” process with rate\ denoted bya(t) in D([0,7] : R™).
= sup [a,(t) —an(r) + From the Skorohod representation theorem [23], we can find
r€[0,¢] processes,, (t) anda’(t) in D([0,T] : RT) such that
n(t) —yn(r) —clt—1r n 4
() = ya(r) = elt = 1)+ u(r)] (4) o) =
By assumption, each individual data raté (t)) is Lipschitz a(t) st a(t),

continuous with some paramet8f < oo. This also implies e _ S
that the average data rate,(r)) is Lipschitz continuous with Where= means “equivalence in distribution” and

parameter}/. Let us now define () —d(®)]] == 0 in D(0,7]: RT) (9)

gn(t) = z[lopt] [an(t) — an(r) Corresponding to the arrival processéét) andal, (t), let us
rEw ~ define q(t), q,,(¢), and ¢, (¢t) by Equations (4), (5), and (8)
+ (t=7)x(0) —c(t =r) +dn(r)] (B) respectively.



Then, it suffices to prove thate > 0, we can findN such ¢, = 1,...,J} and Ay = [0,T]\A;. By taking e <
thatVn > N, ||¢,,(t)—¢'(t)|| < € in the spaceD([0, 7] : RT). 0. 5m1n{t1 t2 —tL ..., T — ]}, this ensures that there is

By the triangle inequality of Skorohod norm, we have only one jump of the processeg,(\.(s)) and g, (s) in the
() — Ol < 1gh) — .l + 126 — ¢ O interval I;. From Lipschitz continuity ofp,, Vs € [0, T,
<

/ / / /
By applying Lemma 3.1 to the first term of RHS and Pa(4n(Aa(5))) = Pe(@n(s)] < Lglan(An(s)) — ¢, (5)|
Lemma 3.2 to the second term of RHS, the result followg g Nypaw = max(Ny, No). Then,Vn > Nypax,
[ |

Using this result, we now show that the total volume of | , 1 if se A,
marks received over the (slowed-down) time-inter{@lT] 00 (An(5)) = au(s)] - < e(c—xz(0)) if se€ A
converges that given by an M/D/1 queue.

Theorem 3.2:Suppose that Thus,

() S q(t), telo0,T] over D([0,T]:R"), T T
wlt) = at), telT) (.71 7% g —/ a0 )
wheregq, (t) andq(t) is defined as (4) and (8). Then, we have 0 9
: o < | [ ontan an- [ naone) a
/ pe(an(y)) dy — / pela(y)) dy  (10) A
;o 0, /A o (4, ) dy — /A 00 )
[ o (D) patatndy = [« Op(aty)) da) " 2
b lo 1Pq (41,(9)) = Pq(an(An(y) | dy
roof: From Theorem 3.1 and Skorohod representation Ay
theorem, we can fing/, and¢’ in D([0, 7] : R") such thatg, 4 / d
converges t@/ in the Skorohod topology. By the definition of A P4 (@.(9)) = pal@,Anw)) | dy

convergence in the Skorohod topology, we can find a strictly < 2LgJe + Lg(c — (0))e(T — 2J6)
increasing, continuous functiok,, of 0,7 onto itself and = €(2LgJ + Lo(c — z(0))(T — 2J¢)) (14)

N1 > 0 such that for a giver > 0, andvn > Ny, Sincee is arbitrary in (13) and (14), this completes the proof.

sup |g,(An(t)) — ' ()] < e The proof of (11) is analogous. n
t€[0,T)
sup |An(t) —t < € (12)
te[0,T] B. An Equivalent Rate Based Marking Function
By adding and subtracting a common term, we have This section defines an equivalent rate based marking func-

tion based on Theorem 3.2 and Theorem 3.1. Let us consider
the marks received over the time-interyal £] by some user

. By definition, the marked volume of dataver this time-
interval is given by

‘/ Pqe(an(y)) dy — /Opq( "(v)) dy| <

[ A

0 0

T

o 1 /7
/ 2, (Y)pe(Qn(y))dy = - / zy, (y/1)pqg(an(y))dy
0 0

Thus, the time- average volume of markaceived by usef
over the time-interval0, £] is

+/0 pq<q;<An<y>>>dy—/0 po(d (1)) dy

For the second term of RHS, using Lipschitz continuity
assumption op, and the condition (12), T

1
‘/ Pq(an(Ma(y))) dy — /Opq( "(y)) dy 7/ pq wNdy (15)

T | e pQu) dy =
< /O Lalan(An(y) = d' W)l < LeTe, (13)  Thys, from Theorem 3.2, we have

where0 < L, < oo is the Lipschitz constant agf,(-).
Next, for the first term of RHS, We know thaf (s) T/ / Y)pe(Qn(y)) dy e
D([0,T] : R*) has a finite number of jumps denoted by -
J(¢') < oo, since the arrival process is a Poisson process xi(o)l/ po(a(y)) dy, (16)
with a finite rate over the finite interval of tim@, T']. From TJo " ’

the condition (12), we can find; > 0 such thatvn > No,
J = J(q,) = J(¢). Let us denote the jump times qf,(s)
by {t/,j=1,...,J}.

Now, we divide the entire intervgD, T'] into two sets of N
intervals A; and Ay, where A; = {I; £ [t — et + pr(x(0) = T/O Pa(a(y)) dy

where ¢(y) is the queue-length process of an M/D/1 queue
with Poisson arrival rata and capacity:—x(0). Let us define

17)



For n large enough, we see from (16) that the interaction be- = e
tween the router queuing process and the congestion controller
at a fixed user occursnly throughthis functionpz(-). of asngleconralief | | Nl | ||

Further, we observe thaty) is a regenerative process whenend-user
cﬁx < 1 andz < c. Thus, from the ergodic theorem for a

regenerative process [24] and Smith’s theorem [25], for a giveRemediate router
e > 0, 31y such thatvl > Ty, queue length

1

T
= _ all system scal [ tem scal
T/o pq(q(y))dy Eﬁ;—TLPII(Q)] < € (18) (S:nmszun?;erof?mws) (‘I’J\;?;eszunir;erof‘falmms)

Time Time

wherer?! is the stationary distribution of an M/D/1 queue witfi9- 2. System scale size and time step size
arrival rate\ and capacityu.
For T large enough, and by defining

E .. if 2 <land z<c, increasgd simula_tion complexity. A_Iso, the _number of events
{ ™ Pa(@) Lo N (19) scales linearly with the number of intermediate routers.
1 if z>corz?; > 1L On the other hand, the equivalent rate based model permits

we see from (17) and (18) that the congestion controlite following implementation. Fix a small time-stép> 0
dynamics with a queue based marking functjgi-) can be such that the arrival rate from a controlled flow does not
well approximated by amquivalentsystem with only a rate vary significantly over this time-step (i.eq is inversely
based controllep(z) at the router, where: is simply the Proportional to the end-system congestion controller gain, see
average arrival rate from the controlled flows (averaging ovEfgure 2). For this fixed, suppose that the number of flows,
flows, not time) to the router queue. n, is large enough such that there is a sufficient amount of
Remark 3.1:We comment that for eadixedT’, asn — oo, randomness due to uncontrolled flows over this intef@ad]
the limiting approximate model (19) holds. Thus, fBriarge (i.e., the Poisson approximation holds for the chosen value of
enough (but finite), we can be within arbound of the time- 0)- Now at each equivalent rate based router, a computation
averaged limit ((18)). Physically, this corresponds to the timé2 determine the marking probability is performed only once
scale separation issue. In reality, we are interested in usifigeach time-step size. Such a marking value is computed
this approximation for a finite: (number of flows). Thus, the at each intermediate router, and the packets from end-systems
time-scaleT should be chosen such that the following tw@re marked appropriately depending on the marking values.
properties hold(i) The time intervall is large enough such Thus, marking computation required scales;as n; (n; is
that the randomness due to uncontrolled flows enables the “[¢ number of intermediate routers), and is invariant with the
of large numbers” to hold (i.e, the M/D/1 queue time-averadwmber of flowsn. Further, such a rate based approximation
is close to the stationary distribution), afifJ the time-interval Will become increasingly accurate as the system scale (
T/n is small enough such that the arrival rate from a us#icreases.
(controlled flow) does not significantly change. Thus, for any
fixed e > 0, we choos€l" large enough such that the expected
value of the (queue based) marking function with an M/D/?- Examples: REM and RED

queue is “close” to the time-average. For this fixédwe | this section, we derive the closed form of equivalent rate

can apply the limit theorem (im) to justify the rate based pased marking functions for the simplified REM and RED

approximation. controllers, which have no queue averaging, but depend only
If there is insufficient randomness in the network, the valush the instantaneous queue length.

of 7' could be very large, thus requiring a large valuedf.e., 1y ReM: The simplified version used in this paper has the

large number of flows and large capacity) for our analysis {giowing form of the queue based marking function from [10].
hold. However, our simulations (see Section V) indicate that

even with randomness generated due to short ON-OFF flows Q) = 1- e Q. (20)
which occupy about 20%-30% of the link capacity, the value
of n = 100 seems to be sufficient, and leads to a match withishere« is a suitable constant pre-defined in the system, and
5% between a queue based marking function and its equivalénts the queue lengthin the system.
rate based model. First, from the P-K formula for stationary worklodd of

an M/D/1 queue [26], we have

p(r) =

C. Application to Simulation Study v 1—p
E[e_s ] = b — ) (21)
1—2(1—es/n)

Over any fixed interval of time, the simulation complexity
at intermediate routers of a queue based simulation depends
on the number of events to process. As the number of flowderey is the service rate) is the arrival rate, ang = \/pu.
increases, the number of events (packet arrivals/departured;urther, for the fluid queueing system we consider, it follows
marking probability computation) increases, thus leading foom the definition of workload [26] that” = Q/c. Thus, we



10* 100 pkts/sec  10* 100 pkts/sec IV. SIMULATION

5 msec 5 msec . .
\ / In the previous section, we showed that the queue based
\ / marking and the associated queueing dynamics can be approx-
Sources o .W‘ © Sinke imated by a rate based marking function under the fluid model.
° pkts/sec ° . . . .
(90 or 40) msec In this section, we use thes-2[16] simulator to validate our
o / © results. The simulation results in this section show that both
the steady-state behavior as well as the transients of the end
sources have a good match between the queue based marking
Fig. 3. Simulation topology and the equivalent rate based marking.
A. Simulation Environment
have The network topology used in the simulation is shown in
rem Figure 3. In Figure 3, the bottle-neck link is accessed by
pz) = Eﬂi‘m [y (Q)] 100 controlled and 100 uncontrolled flows and its bandwidth
= E_..[l—e V] is set to bel00 x 100 pkts/sec. We set the packet size to
* 1—p be 1000 bytes for controlled and uncontrolled sources in
= 1- 1 (1 — e—wf/(c—w))’ (22)  all simulations. The bandwidth and the propagation delay of
ac each access link are set to b@ x 100 pkts/sec and 5 ms,

wherep = -2 In the next section, we compare simulatioriespectively. We use 90 msec and 40 msec as the propagation

c—z’

results with queue based marking with REM and compare tﬁjﬁlay of the bottle-neck link (200 msec and 100 msec round-
to numerical results using its equivalent rate based markiffi delay for the end sources). We assume that the bottle-neck

function given by (22). router has only marking functionality, i.e., there is no o!ropping
2) RED: The simplified queue based marking function off the packets due to the buffer overflow (see Section 1V-B
RED controller is defined as for additional discussion).
We use the equivalent marking functions for (simplified)
red Q—a\" RED and REM described in section |lI-D as the AQM
P(@Q) = max ( b ) L) (23)  schemes, and we use two kinds of controlled sources, namely,

(i) proportional fair controller [14](ii) TCP Sack ( [29]
wherea andb are suitable constants pre-defined at the intesuggests the use of TCP Sack or TCP NewReno for network
mediate router [1]. Thus, we have simulation and measurement). Proportional fair controlled

od source; is described by the following difference equation:
pz) = B [U(Q)

O—a\* rk+1] = xfl[k]+um(w—xi[k—d]pq((,2[k—d])),
= Eﬂiﬂ» |fnax<< b ) ,1)]

whereu is the update interval, andlis the round-tip propaga-

“tt g —a tion delay. In our simulation, the update of the source rate
- / ( b ) folq) dg is implemented by replacing?, [k — d|p, (Qn[k — d]) with
+aPr(Q >a+b), (24) Nk the actual number of marks received over the update

interval u. In our simulations,w and x are set to be 5.5
In order to evaluate (24), it suffices to determine the distriband 1, respectively. In addition, we use a value2o® msec

tion of the random variabl€). We know that as the update interval. All sources are started with small
y time differences in order to eliminate synchronization effects
P(Q>y) = PV >7) between the end-user systems. For notational convenience, we

o ) call the queue based RED (REM) as QRED (QREM) and
From [27], [28], the unfinished work’ for a Poisson processihe equivalent rate based marking scheme as RRED (RREM),
with arrival rate A in the system with service ratg has a respectively. In the simulations, we have used the following
steady state distribution of the form parameters for RED and REM: = 0.02 anda = 10, b = 30.
. The uncontrolled flows are modeled by ON-OFF processes
— _ _ px _
PIU > 2) =1-(1-p)e”Qa(x — 2]), (25) [30], where the ON and OFF periods are exponentially dis-
where{Q,(z),n = 0,1, --- } are polynomial functions (which tributed with parametet00 msec or200 msec (denoted by

/. From the definition of7 andV, we havel/ = nV. Thus, rate in the ON period is suitably set to be constant so that
the total load due to the uncontrolled flows is a fixed fraction

PrQ>y) = PrV> y) of the link capacity. We denote the average load due to a
cy(c — 1) uncontrolled flow by\ pkts/sec in the simulation results.
= Pr (U > = ) (26)  We have two kinds of figures (throughput for both sources

and additionally congestion window size for TCP sources) to
From (25) and (26), we can evaluate (24). validate the equivalent rate based marking function proposed
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in this paper. In the figures titled “throughput” (see Figurelow under different network conditions (see Figure 10).

4, 6, 5, 7, and 11), we measure and plot the aggregate

instantaneous throughput (over all controlled sources) evaBy Implementation Issues

0.5 sec, average them over the number of controlled sourcespyior to presenting the simulation results, we describe a
and plot the samples at one second intervals. In addition, Y&, implementation issues. In the simulations in this section,
also plo_t the average rate over (horl_zontal Ilne in the figureg}e yse a sliding window of time-step size to estimate the
In the figures for the congestion window size, we trace thgrival rate from controlled and uncontrolled sources at the
instantaneouswnd (congestion window size) value of all g ter. Time-step size is set to be 5 msec and the time-
TCP sources, average them across the sources, (sampled §4gWal of the sliding window is chosen to be the round-trip
1 second) and plot this as a time series (see Figures 8 gpgk of the sources [31], i.e., the number of sliding window
9). Finally, we also present the complementary distributiaglots is equal tortt/0.005. We estimate the arrival rate by
function of the congestion window size (cwnd) for a typicalomputing the instantaneous arrival rate over the time-step
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size and averaging the sliding window length of current aridstantaneous rates will not be identical in a path-wise sense.
previous instantaneous arrival rates. However, a good match between the two schemes implies that
Further, the actual number of flows is not needed at thiee statistical behavior should be close to each other.
router to compute the marking probability based on the Both figures include the results for different network pa-
equivalent rate based marking function. Computing the totaimeters such as the round-trip time, the load of uncontrolled
controlled and uncontrolled rates (as opposed to the averdigavs, and the burstiness of uncontrolled flows. Through these
arrival rate) is sufficient as the equivalent marking function i®sults, we can compare the long-term behavior of a queue
automatically “normalized.” based and a rate based scheme. The results show that there
In the simulations, the buffer size (also called queue limit) is about less then 5% difference between the rate based and
set to be sufficiently large such that only marking functionalitthe queue based scheme. Further, the instantaneous rate show
affects the transmission rate of controlled flows, i.e., physicsimilar statistical path behavior.
dropping of the arriving packets does not occur due to queuen this simulation, the arrival rate could exceed the service
overflow. capacity. In this situation, while the equivalent rate based
In practice, however, packet drops could occur due to finitearking marks all the packet, not all packets are marked in
buffers at routers. The equivalent rate based model in thie practical packet systems. In addition to the Poisson ap-
paper can be extended to such a finite queue length systenplgximation, we posit that one of the reasons for performance
adding an equivalent rate basdddpping function(thus the difference between the rate based model and the queue based
intermediate router has a pair of probability,,, ps), where model is due to this reason.
pm andpg are marking and dropping probability computed However, if the system scale is large enough, this effect
based on the equivalent rate based model), since the droppgiegomes small for the following reason: when the arrival rate
function for a finite size of queue in a queue based systearceeds the capacity, the queue-length increases, leading to an
is a step function. Further, this model can be extended dostable queue. Thus, as the system scale increases (indexed
more complicated queue based dropping function (e.g., REB) n), the queue length is of order, and thus an increasingly
than a step function. However, in this paper, we restrict to drge fraction of the incoming packets will be marked (as
intermediate router with only marking functionality. the marking function is unscaled). This is supported by the
simulation results that even 100 controlled and uncontrolled

C. Experiment 1: Proportional Fair Controller flows are enough to decrease the performance error to less

Figures 4 and 5 show the average (over flows) instantaneé'ﬁ@n 5%.
throughput as well as the long-term average over the entire )
simulation time (straight horizontal line in the figures) foP- Experiment 2: TCP Controller
the REM and RED controllers. As probabilistic marking is Figures 6 and 7 plot the throughput with the REM and
employed at the router (with both queue based and equRED controllers respectively, and Figures 8 and 9 plot the
alent rate based marking), the starting times of flows amdngestion windows (averaged over flows) as a time series.
transmission pattern of uncontrolled flows are randomized, tRerther, Figure 10 shows that complementary distribution
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| decouple the dynamics of the router queues from those of the
. L L end controllers. This implies that a time-scale decomposition
0 % Congestion Window Sz () 2 naturally occurs such tha_t t_he dynamics of the router mani-
(b) X = 50 fest only through theistatistical steady-statéehavior. This
Fig. 10. Congestion window size distribution of a typical TCP source withe'_SC"f‘-Ie de_CompOS|t|0n implies that a queue.-length based
RED: ON-OFF(0.1) and rtt = 200 msec marking function such as Random Early Detection (RED) or

Random Exponential Marking (REM) have aquivalentform
which dependonly on the data arrival rate from the end-

function of the congestion window for a typical TCP flowsystems and do not depend on the queue dynaifinis leads

for two different loads and with the RED controller at thd0 much simpler dynamics of the differential equation models
router. The plots indicate that the window sizes are statistica(?ere is no queueing dynamics to consider), which enables
very similar for the queue based marking and the equivaldf¥v complexity simulation and easier analysis.

rate based marking. Thus, this indicates that replacing a queu&/sing packet based simulations, we have studied queue
based marking function by its equivalent rate based functi®d@sed marking schemes and their equivalent rate based mark-

does not statistically affect the end host’s behavior. ing schemes for different types of controlled sources (propor-
tional fair and TCP) and marking schemes (RED and REM).

E. Experiment 3: Sensitivity to Change of Network Conne%ur_ results !ndlcate a gpod match in the rates Qbserveq at

tions the intermediate router with the queue based marking function

o . . . and the corresponding rate based approximation. Additionally,

In this simulation, we study the sensitivity of the equiVgne simulation complexity is reduced due to the absence of
alent rate based marking function to the change of netwogie eing dynamics in the network simulation. Further, the
connections. The simulation starts with 100 uncontrolled aggdqow size distributions of a typical TCP flow with a queue

200 controlled sources. After 100 seconds, the number \pfceq marking function as well as the equivalent rate based
controlled sources is reduced to 100. Then from 200 Seconﬁ%rking function match closely, indicating that replacing a

the number of uncontrolled sources increases to 150. Thgs e based marking function by its equivalent rate based
bottle-neck bandwidth maintained at 20000 pkis/sec and the g,h¢tion does not statistically affect the end host's behavior.
mean transmission rate of an uncontrolled source is sustained,
which means that the uncontrolled load after 200 sec is
changed to 75%. In Figure 11, we can see the robust behavior
of the proposed rate based marking function even with thg] S. Floyd and V. Jacobson, “Random early detection gateways for
Change Of network Connect|0ns COngeStiOn aVOidancelEEE/ACM Transactions on Networkingol. 1,
no. 4, pp. 397-413, August 1993.
[2] F. Kelly, “Mathematical modeling of the Internet,” iMathematics

V. CONCLUSION Unlimited - 2001 and Beyond (Editors B. Engquist and W. Schmid)

. Berlin: Springer-Verlag, 2001, pp. 685-702.
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short and unresponsive flows in the Internet is sufficient to IEEE Control Systems Magazineol. 22, pp. 28-43, February 2002.

REFERENCES



11

[4] S. Deb, S. Shakkottai, and R. Srikant, “Stability and convergence tfterval, the number of arrivals in,(-) is the same as the

TCP-like congestion controllers in a many-flows,” Rroceedings of humber of arrivals im(-)' see also the proof of Lemma 3.2).
INFOCOM, San Francisco, CA, 2003. ’

[5] S.Low, F. Paganini, J. Wang, S. Adlakha, and J. C. Doyle, “Dynamics ‘!)fet {tng st < T, 5 = 1,2,..., J} be the jump times,
TCP/RED and a scalable control,” Proceedings of IEEE INFOCOM respectively.
vol. 1, New York, NY, 2002, pp. 239-248. Next, |et§n(7’) _ yn(r) _ a:(())r. Then, we have

[6] S. Shakkottai and R. Srikant, “How good are deterministic fluid models

of Internet congestion control?” iRroceedings of IEEE INFOCOM

New York, NY, June 2002. ‘fn(t) _ §n(7”)|
[7] V. Misra, W.-B. Gong, and D.Towsley, “Fluid-based analysis of a

network of AQM routers supporting TCP flows with an application to

RED,” in Proceedings of ACM SIGCOMM2000.
[8] S. Kunniyur and R. Srikant, “End-to-end congestion control: utility

functions, random losses and ECN marks,” Rnoceedings of IEEE nM ( t

>

IN

INFOCOM, vol. 3, Tel Aviv, Israel, March 2000, pp. 1323-1332.
[9] ——, “Analysis and design of an adaptive virtual queue algorithm for
active queue management,” Proceedings of ACM SIGCOMMsan M 2 2
Diego, CA, August 2001, pp. 123-134. = ("= (27)
[10] S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin, “REM: Active queue
managementIEEE Network vol. 15, May/June 2001. Then, from the definition of,,(¢) and g, (t),
[11] P. Tinnakornsrisuphap and A. Makowski, “Limit behavior of ECN/RED

gateways under a large number of TCP flows,Pimceedings of IEEE qn(t) = sup [an(t) —an(r) + 2(0)(t — 1) + & (2)
q

INFOCOM, San Francisco, CA, April 2003, pp. 873-883. ref0,t] (
[12] J. Cao and K. Ramanan, “A Poisson limit for buffer overflow probabil- —£ (r) _ c(t _ r) + (r)]
ities,” in Proceedings of IEEE INFOCOMew York, NY, June 2002. _ " "
[13] M. Mandjes and J. H. Kim, “Large deviations for small buffers: an n(1) [an(t) — an(r) + (t —r)z(0)—
insensitivity result,”"Queueing Systemsol. 37, pp. 349-362, 2001. r€[0,¢] _
[14] F. P. Kelly, “Models for a self-managed Interne®hilosophical Trans- C(t - 7") + qn(r)]
actions of the Royal Socigtyol. A358, pp. 2335-2348, 2000. ) )
[15] S. Deb and R. Srikant, “Rate-based versus Queue-based modeld-et Ag,(s) = |gn(s) — Gn(s)|, s € [0,T]. Then, it suffices to

Il
]
=
e}

congestion control,” irProceedings of ACM SIGMETRIC3004. show that for giverE > 0. there existsNV such thatvn > N
[16] “Ns-2.” http://www.isi.edu/nsnam/ns/. ’ ’
[17] PDNS, “Parallel and Distributed NS,” we have

http://www.cc.gatech.edu/computing/compass/pdns/. B
[18] GloMoSim, http://pcl.cs.ucla.edu/projects/glomosim/. sup AQn(S) < g
[19] QualNet, http://www.scalable-networks.com. s€[0,T7]

[20] R. Johari and D. Tan, “End-to-end congestion control for the Internet. ith if | . i
Delays and stability,JEEE/ACM Transactions on Networkingol. 9, ~SINC€ convergence with respect to uniform topology implies
no. 6, pp. 818-832, December 2001. convergence with respect to Skorohod topology.

[21] D. Daley and D. Vere-Jone#n Introduction to the Theory of Point Consider any two iump times& and#*!. Then. we have
Processes New York, NY: Springer-Verlag, 1988. y jump o8, no !

[22] S. Shakkottai and R. Srikant, “Mean FDE models for Internet congestion VES | ~ (1] Ly j
control under a many-flows regimdEEE Transactions on Information Adn (tn ) < Agn (tn) + |§n(tn, ) &n (tn)|
Theory vol. 50, no. 6, June 2004. < AG.(H P Ly (P

[23] P. Billingsley, Convergence of Probability Measures  Wiley- - Gn(tn) + (" + 1)t n)
Interscience, 1999. ~ 1j j+1 j

[24] W. L. Smith, “Regenerative stochastic processesPrioceedings of The < Agn (tn) + ;(QT)(tn - tn)

Royal Society of Londomol. A 232, 1955, pp. 6-31. i o
[25] S. I. ResnickAdventures in Stochastic ProcesseBoston: Birkhauser, Further, for any,zgI c [tﬂ tﬁ‘l],

1992. e
26] R. W. Wolff, Stochastic Modeling and the Theory of QueueEngle- . ; [ M ; :
126} wood Cliffs, NJ: Prentice Hall, 1%89. yore ? Agn(2]) < Agn(t]) + ?(QT)(Z% —t)
[27] U. M. J. Roberts and J. Virtam&roadband Network Teletraffic, Final ) M . .
Report of Action COST 242 Boston: Birkhauser, 1992. < Gu(t)+ =D ) (28)
[28] J. Virtamo, “Numerical evaluation of the distribution of unfinished work n

in an M/D/1 system,’Electronics Lettersvol. 31, no. 7, pp. 531-532,

195 Thus, it is enough to checkg, (s) whens € {t}, , tJ <
[29] S. Floyd, “Thoughts on the evolution of TCP in the Internet,” invitedls j = 1,2,...,J}. Noting thatAg, (0) = 0 sinceq,(0) =

talk at the Second International Workshop on Protocols for Fast Long;, (()), we have

Distance Networks, 2004.
[30] C. V. Hollot, Y. Liu, V. Misra, and D. Towsley, “Unresponsive flows 1 M 1

and AQM performance,” inProceedings of INFOCOMvol. 1, San Aqn(tn) < 72T(tn - 0)

Francisco, CA, April 2003, pp. 85-95. ](74 M
[31] H. Kim and J. C. Hou, “Network Calculus Based Simulation for TCP Agn(t2) < —2T(tl —0)+ —27(t2 —t})

Congestion Control: Theorems, Implementation and Evaluation,” in ](14 n

Proceedings of IEEE INFOCOMMVarch 2004. — —2T(t2)

n n
APPENDIXI
PROOF OFLEMMA 3.1 By induction, we have

Proof: Let.J = J(a,) be the number of jumps (number Adn(tl) < %ZT(#)
of arrivals) of the trajectory,, (t), ¢ € [0,T]. It can be shown nitn) = n
that for n large enough,/ < oo almost surely, since,(-) < o2 (29)
converges ta(.), a finite rate Poisson process, in the Skorohod oon

topology (thus, forn large enough, and over a compact tim&rom (28) and (29), the result follows. [ ]
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APPENDIX I
PROOF OFLEMMA 3.2
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Proof: By definition of convergence in Skorohod topol-
ogy, for a giverd < ¢ < 1 and sufficient large:, we can find a
strictly increasing, continuous functioy, of [0, 7] onto itself
such that

and forn large enough, we have
J & j(a) = j(an)a (31)

where 7 (-) is the number of jumps over the spabé[0, T :

RT). The fact thata(s), s € [0,7] is a Poisson process with

a finite rate ensures that we have a finite number of jumps
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thatsup,eo 77 [¢n(An(s)) — q(s)| is arbitrarily small. Let
Agn(s) = lan(An(s)) —q(s)]
Then, we have the following recurrence relation
Agu(PT) < Agn(t) + 6(c — (0)),

sinceq, (A, (s)) andg(s) has only one jump at time&/*! in
the interval(¢/, t/+1]. Thus, the queue size difference is only
that due to the amount of service with rate- 2(0) over the
time difference|\,,(s) — s|. Further, for anyr € [t/,t/+1], we
have

sup |t —t'] < 4,
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Thus, it is enough to check only the jump times of the proce
q(s),s € [0,T]. Thus, definingt” = 0, and choosing: large
enough such thdy,, (0) — ¢(0)| < 4, we have -

) processes and queueing theory. His email address

sup |gn(An(s)) — q(s)] max Agq,(t7) is shakkott@ece.utexas.edu.
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Choosingé small enough, we are done. [ ]



