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Stochastic network utility maximisation – a tribute to Kelly’s
paper published in this journal a decade ago
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SUMMARY

Since the seminal work by Kelly on distributed network resource allocation using the language of network
utility maximisation (NUM) a decade ago, there have been extensive research efforts generalising and
applying NUM to model, analyse and design various network protocols and architectures. Some of
these works combine the distributed optimisation approach with stochastic network models to study
NUM under network dynamics occurring at the session, packet and constraint levels. We survey these
works by presenting the key questions, results and methodologies in this emerging theory of stochastic
network utility maximisation, followed by discussion on related work and future research challenges.
Copyright © 2008 John Wiley & Sons, Ltd.

1. INTRODUCTION

In the 1997 paper in this journal [1] and the 1998 paper
[2], Kelly et al. presented an innovative idea on network
resource allocation that has led to many research activities
since. An optimisation problem is formulated where the
variables are the source rates constrained by link capacities
and the objective function captures design goals:

Maximise
∑

i Ui(xi)

Subject to Rx � c
(1)

where the source rate vector x is the set of optimisation
variables, one for each of the sources indexed by i, the {0, 1}
routing matrix R and link capacity vector c are constants,
and Ui(·) is the utility function of source i. Because the
above network utility maximisation (NUM) problem can be
readily decomposed, distributed algorithms are developed
where each of the links and sources controls its local
variable, such as link price or source rate, based on local
observables, such as link load or path price. By techniques
such as Lyapunov function or the descent lemma, global or
local asymptotic convergence towards the optimum can be
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proved for these distributed algorithms, for cases with or
without propagation delay. A key insight is that the effects
of network protocols can be understood as the trajectories
of a controlled dynamic system.

After a decade of work by many researchers, there is now
a substantial set of theory, algorithms, applications and even
commercialisation based on the NUM model of networks.

First, NUM and its extensions can be used to
model various resource allocation problems and network
protocols. Utility functions may depend on rate, latency,
jitter, energy, distortion, etc., may be coupled across users,
and may be any non-decreasing function, although most
papers assume smooth and concave utility functions. They
can be constructed based on user behaviour model, operator
cost model or traffic elasticity model. They can also shape
the fairness of resource allocation: a maximiser of the α-fair
utility functions satisfies the definition of α-fair allocation.
Here α-fair utility function refers to a family of functions
parameterised by α � 0: Uα(·) = (·)1−α/(1 − α) for α � 0,
α �= 1 and log(·), for α = 1 [3], and a feasible allocation x is
called α-fair if, for any other feasible allocation y,

∑
s(ys −

xs)/xα
s � 0. The notion of α-fairness includes maxmin

fairness, proportional fairness, throughput maximisation as
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special cases, and it is often believed that larger α means
more fairness.

Sometimes, network protocols are modelled by NUM via
‘reverse-engineering’: a given protocol, originally designed
based on engineering intuitions, is shown to be implicitly
solving an underlying optimisation problem. Insights thus
obtained on why the protocol works well, or not so well,
can then guide a systematic design of future versions of the
protocol. Indeed, one of the first applications of NUM was
to show that Internet congestion control in Transmission
Control Protocol (TCP) implicitly solves a NUM problem
where the variant of TCP dictates the exact shape of the
utility function.

Second, the basic NUM formulation can be generalised to
incorporate other degrees of freedom, e.g. routes, schedules,
transmit powers, contention probabilities, channel codes
and modulations, with constraint set and objective function
modified accordingly. In particular, the constraint set can
reflect physical constraints, technological and economic
constraints and inelastic quality of service (QoS) constraints
by individual users. These generalised NUM formulations
provide a starting point to generate distributed resource allo-
cation algorithms for wireline and wireless networks alike.

Furthermore, cross-layer interactions may be charac-
terised and layered protocol stacks designed by viewing
the process of ‘layering’, i.e. the modularisation and
distribution of network functionalities into layers or
network elements, as decomposition of a given NUM
problem into many subproblems. These subproblems are
‘glued together’ by certain functions of the primal and
dual variables. This framework of ‘layering as optimisation
decomposition’ [4] has been developed by many researchers
over the last several years for joint control of congestion,
routing, scheduling, random access, transmit power, code
and modulation, etc. It has also amplified the benefits
of mechanisms such as back-pressure scheduling and
network coding in the entire protocol stack. Alternatives
of decomposing the same NUM formulation in different
ways further lead to the opportunities of enumerating
and comparing alternative protocol stacks. The theory of
decomposition of NUM thus becomes a foundation to
understand, in a conceptually simple way, the complexities
of network architectures: ‘who does what’ and ‘how to
connect them’.

Despite the range of research activities above, an
important aspect of NUM models remain challenging. In
the basic NUM (1) and the associated solutions, it is
often assumed that the user population remains static,
with each user carrying an infinite backlog of packets
that can be treated as fluid, injected into a network with

static connectivity and time-invariant channels. While these
assumptions make the resulting model tractable, they also
compromise the accuracy of the model and limit the
applicability of the results. In many applications, users
arrive with a finite workload and depart after finishing it.
Each packet generated by users goes through a sequence of
events such as random arrival and probabilistic dropping
and the network consists of time-varying channels with
dynamic topology and uncontrolled traffic. Will the results
of NUM theory remain valid and the conclusions maintain
predictive power under these stochastic dynamics? Can new
questions arising out of stochastic models also be answered?
This paper surveys the results over the last 8 years on these
two questions.

An analogy can be drawn with Shannon’s seminal
work in 1948 [5]. By turning the focus from the
design of finite-block length codes to the regime of
infinite-block length codes, thus enabling the Law of
Large Numbers to take effect, Shannon’s work provided
architectural principles (e.g. source-channel-separation)
and established fundamental limits (e.g. channel capacity)
in his mathematical theory of communication. Since
then, the complicating issues associated with the design
of practical codes and with finite block length have
been brought back into information theory. Some of the
principles and design guidelines from the 1948 papers
remain unchanged while other have been modified.

A similar development has happened in networking over
the past decade. By turning the focus from coupled queuing
dynamics to an optimisation problem based on deterministic
fluid models, thus enabling the views of decomposition
and distributed control, Kelly’s work [1,2] leads to our
current study on architectural principles in networks and
a mathematical foundation for network protocol design.
However, the complicating issues associated with stochastic
network dynamics need to be brought back into such study,
possibly modifying some of the principles and design
guidelines based on NUM.

Incorporation of stochastic network dynamics into the
generalised NUM formulation often leads to challenging
models for those working in either stochastic network
theory or distributed optimisation algorithms. As an
example to be further explained later, in establishing
stability of NUM under session arrivals and departures,
service rates of queues are determined by a distributed
solution to NUM, while the parameters of NUM
formulations are in turn stochastically time-varying
according to the states of the queues.

Just like control theory that has been connected with
NUM via feedback system models, or economics theory
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that has been connected with NUM via pricing-based
supply-demand models, stochastic network theory is being
connected with NUM via the problems summarised in this
survey.

The variety of these research problems will be grouped
into three major categories: session level, packet level and
constraint level. After a brief overview in this section,
each category will be discussed in a separate section,
before related work and open problems are presented in
the remaining part of the paper.

Session level. Sessions† dynamically arrive with finite
workload and depart after finishing the workload, rather
than holding infinite backlog and staying in the network
forever. In such a session-level dynamic model, researchers
have studied the stochastic stability region achieved by
allocating resources through NUM. Among the results
surveyed in Section 2, a typical one is that the stability
region of α-fair allocation, for any α within a certain range,
is equivalent to the constraint set if it is convex and time-
invariant, which is also the largest possible stability region
that can be obtained by any resource allocation. This means
that satisfying the constraints in a deterministic formulation
is both necessary and sufficient for session-level stability.
However, researchers have also found that different models
of arrival process, utility functions, constraint sets and
timescale separation might lead to a dependence of stability
region on α, and a gap between achievable stability region
by NUM and the maximum stability region.

Necessary and sufficient conditions for stability of
NUM under the most general assumptions remain an
open problem, as are most of the questions on the
distribution of queue length and end-to-end delay induced
by session arrivals and NUM resource allocation.

Packet level. Packets typically arrive in bursts, rather
than in a smooth fluid, due to packet-level protocols that
determine the exact pattern of packet generation. Upon
arrival, packets go through a sequence of events including
probabilistic marking and dropping. Queues in downstream
nodes are shaped by the queuing actions in upstream nodes.
In addition, flows obeying congestion control interact
with uncontrolled flows, such as user datagram protocol
(UDP)-based multimedia traffic and short-lived ‘mice’
traffic, which are often modelled as stochastic processes
independent of the NUM variables.

We group the above issues into one large category
of study referred to as stochastic dynamics at packet
level. Among the associated studies on the impact of

† Sometimes also called users, flows or connections.

microscopic dynamics on macroscopic properties include
the following topics: (i) validity of deterministic-fluid-
based NUM under packet-level dynamics, (ii) the effects
of randomness due to uncontrolled flows on performance
of flows controlled by NUM (iii) translation of application-
layer characteristics in hypertext transfer protocol (HTTP),
Peer-To-Peer (P2P), and Internet-Protocol-TV (IPTV) and
(iv) impact of stochastic noisy feedback on distributed
solutions of NUM.

Constraint level. In both wireline and wireless net-
works, the constraint set of NUM may be time-varying
for a variety of reasons, e.g. fading in wireless channel,
failure of links, and mobility, sleeping mode or battery
depletion of nodes. Variations in the constraint set offer
both the challenge to prove stability and optimality of the
existing algorithms, and the opportunity to gain benefits
by opportunistic transmission and scheduling. We focus on
the first set of issues in this survey.

A different and major class of problems with constraint-
level dynamics is to maximise utility subject to stability,
where the constraint set is a general convex set representing
the stability region.

Obvious from the brief introduction above, the range
of questions raised under the general term of ‘stochastic
network utility maximisation’ is in fact very broad. There
are also many situations where dynamics at more than one
level must be modelled in the same problem formulation.
We will discuss these combinations after presenting each
levels of dynamics individually.

Timescale separation. There are at least four timescales
involved in the formulation of stochastic network
utility maximisation. Understanding the combination of
timescales is often important. Let Ts represent the timescale
of session-level dynamics, e.g. the inter-arrival time of
sessions. Let Tp represent that of packet-level dynamics, e.g.
user think-time of a web-browsing model. Let Tc represent
that of constraint-level dynamics, e.g. coherence time of
wireless channel. Finally, let Tr represent that of resource
allocation algorithm, often iterative and distributed, solving
a NUM problem, e.g. round-trip time divided by the rate
of convergence of the algorithm. By saying a timescale
is 0, we mean it is infinitesimally small: the variations
of the network dynamics smooth out or convergence of
the algorithm instantaneously achieved. Each combination
of timescale assumptions can be represented by a string
of inequalities, e.g. 0 = Tp ≈ Tr << Ts ≈ Tc means that
the packet level details can be ignored, the algorithm
converges instantaneously fast compared to either the
session arrivals or the constraint variations, which takes
place at similar timescales and cannot be ignored. In
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each of the problem formulations to be surveyed, there
is an underlying assumption, or a set of assumptions all
reasonable to the application, of timescale separation as
represented by similar string of inequalities.

Timescale separation often leads to more tractable model
and stronger analysis results, but we also have to be aware of
the danger of imposing unreasonable timescale separations
that are too inaccurate for the resulting conclusions to be
useful.

Notation. We use standard RN and RN+ for the N-
dimensional real and non-negative Euclidean spaces,
respectively. Generally, we use the calligraphic font S to
refer to a set, and the bold-face fonts x and X to refer to a
vector and a matrix, respectively.

2. SESSION-LEVEL DYNAMICS

2.1. Basic framework of session-level stability

Traffic demands. Consider a network where sessions are
randomly generated by users and cease upon completion.
Sessions are classified according to the set of resources
required to transfer the corresponding packets. For example,
in wired networks with fixed routing, the class of a session
is defined by the set of links that the session traverses from
the source to the destination, i.e. session’s path. We have a
finite set S of S classes of sessions.

Suppose that sessions of class s are generated according
to a Poisson process of intensity λs sessions per second.
The file sizes of class-s sessions are i.i.d. exponentially
distributed with mean size 1/µs bits. We will discuss
the cases for general arrival and file-size distributions in
Subsection 2.2.4. Denote the traffic intensity of sessions of
class s by ρs = λs/µs bit/s.

Network state. At time t, the network state is denoted
by N(t) = (N1(t), . . . , NS(t)), where Ns(t) is the number
of active class-s sessions. {N(t)}∞t=0 is a stochastic process
governed by the random arrivals and departures of sessions.

Rate region. The constraint set R is the set of achievable
resource vectors φ = (φ1, . . . , φS) where φs is the total
rate allocated to class-s sessions. Since rate allocation was
the first application of NUM, sometimes people refer to the
constraint set of a NUM problem as the rate region, even
when the problem involves other degrees of freedom beyond
rates. We assume here that the rate region does not depend
on the network state N. The form of the rate regions is
diverse and can be either fixed or time-varying, depending
on the system model and resource allocation algorithms. In
this subsection, we focus on the fixed rate regions of various

shapes. We will discuss time-varying rate regions later in
Section 5.

Resource allocation by NUM. Resource allocation
algorithms allocate network resources to different session
classes according to the current network state N(t), the
utility function and the rate region. Resource allocation
based on NUM is the solution of the following optimisation
problem:

maximise
∑

s Ns(t)Us(φs/Ns(t))

subject to φ ∈ R
(2)

where the utility functions Us are assumed, throughout
this paper, as twice differentiable and concave, although
non-smooth and non-concave utility functions [6, 7] have
also been studied for deterministic NUM. Sometimes
researchers further assume that all session classes share the
same utility function, i.e. Us = U for all s. Figure 1 depicts
the framework of session-level dynamics research.

Figure 1. Distributed resource allocation by solving NUM
under a dynamic user population with session arrivals. Sessions
departure time is shaped by file size as well as service rate, i.e. the
resource allocation vector {φs} obtained by solving NUM, where
each session in class s receives resource φs/Ns(t).
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Two different timescale assumptions are used: either with
timescale separation: 0 = Tr << Ts, or without timescale
separation: Tr ≈ Ts.

Session level stability. A main research focus about
session-level dynamics is to prove necessary and sufficient
conditions for session-level stability. There are many
notions of stability, two of which will be used in this section.

Definition 2.1. (Queue stability). A queueing network
under a resource allocation algorithm is said to be stable-
in-the-mean (or, queue stable, or, simply, stable) [8], if

lim sup
t→∞

1

t

∫ t

τ=0
E

[∑
s∈S

Ns(τ)

]
< ∞

Intuitively, queue stability means that the number of
active sessions in the system remains finite almost surely.
From the Little’s law, the mean duration time of a session
also remains finite almost surely.

A weaker notion of stability is sometimes used.

Definition 2.2. (Rate stability). A queueing network under
a resource allocation policy is said to be rate stable if,
for every class s, limt→∞ Ds(t)/t = λs, where Ds(t) is the
number of class s sessions that finished the service.

In a general network topology, it is challenging to
prove the queue or rate stability of NUM-based resource
allocation. It is a multi-class queueing network with service
rates dependent on the solution to NUM, which is in turn
dependent on the number of active flows. A technique
often used is due to Dai [9], where a suitable scaling of the
original system, called fluid-limit scaling, can provide a
way of proving such stability results. We will later discuss
fluid-limit and describe how it helps with the proof of
session-level stability.

Definition 2.3. (Stability region).

(i) The stability region of a resource allocation algorithm
is defined as the set of traffic intensity vectors
ρ = (ρ1, . . . , ρS) for which session-level stability is
achieved under the resource allocation algorithm.

(ii) The maximum stability region is defined by the union of
the stability regions achieved by all possible resource
allocations.

As an ‘outer bound’ or ‘converse result’, the maximum
stability states that for any traffic intensity vector outside
this set, there exists no resource allocation algorithm that
can stabilise the network at session-level. Note that a
resource allocation achieving the maximum stability region
may not be utility-maximisation-based or implementable in
a distributed fashion.

If we assume Poisson arrival and exponential file size (i.e.
workload), the system can be modelled by a Markov chain,
whose network dynamics evolve in the following way: for
each class s,

Ns(t) → Ns(t) + 1, with rate λs

Ns(t) → Ns(t) − 1, with rate µsφs(N(t))

Then, mathematically, stability means that the process
{N(t)}∞t=0 is ergodic. The session-level stability is now
equivalent to the positive recurrence of the Markov process
N(t) under simple technical conditions on aperiodicity and
irreducibility.

2.2. Session-level stability results

The existing research results on session-level stability are
summarised in Table 1, with different network topologies,

Table 1. Summary of main results on session-level stability.

Work Arrival, file size dist. Topology Rate regions Ui U shape (i.e. α)

[10] Poisson, exponential General Convex Same α = 1, α → ∞
[11] Poisson, exponential General Convex Diff. General
[12, 13] Poisson, exponential General Convex Same α � 1
(Fast timescale)
[14] General, exponential General Convex Diff. General
[15] General, general General Convex Same α → ∞
[16] General, phase type 2 × 2 grid Convex Same α = 1
[17] General, phase type General Convex Same α = 1
[18] General, general Tree Convex Same General
[19] General, general General Convex Diff. α → 0+

(Rate stability)
[20] Poisson, exponential General Non-convex Diff. General

Time-varying convex Diff. General
Open problem General, general General Convex, non-convex Diff. General, non-concave

Fast timescale Time-varying
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Figure 2. Illustration of session-level stability region for different
shapes of rate region. In the convex case, all four curves coincide in
many models of file arrivals and utility functions, which means that
stability region for NUM is independent of α and is the maximum
one that can be achieved by any resource allocation. This is no
longer the case for non-convex rate region (Subsection 2.2.3) or
time-varying rate regions (Subsection 5.3). (a) Convex rate region,
(b) non-convex rate region, (c) time-varying rate-regions.

shapes of rate region and utility function and arrival process
and file size distributions. They are illustrated in Figure 2.
Results for α-fair utility can be readily extended to general
concave utility functions whose ratio of the first and second
derivatives follow a similar order of growth in x as the α-
fair utility. The case for time-varying rate regions will be
discussed in Section 5.

2.2.1. Polytope and general convex rate region

The first analysis of session-level stability focuses on wired
networks with fixed routing, supporting data traffic only [10,
11]. For such networks, the rate region is a polytope formed
by the intersection of a finite number of linear capacity
constraints, i.e.

R = {ρ|Rρ � c}

For this rate region, assuming timescale separation, it
is shown that all α-fair allocations with α > 0 provide
session-level stability if and only if the vector representing
the traffic intensities of session classes lie in the rate
region. In other words, the rate region in the α-fair utility
maximisation problem is also the stability region under
session-level stochastic dynamics. This stability region is
also the maximum stability region.

A key proof technique is to use the fluid-limit, defined by
the following:

n(t) = lim
ω→∞

N(ωt)

ω

Then, the system dynamics at the fluid-limit regime is
provably represented by

d

dt
ns(t) = λs − µsφ(n(t))

This fluid-limit scaling of the original system makes the
limiting system deterministic rather than random, which
facilitates the proof of stability, guided by Theorems 2.1
and 2.2.

Now we describe how the fluid-limit scaling can be used
to prove session-level stability in Definitions 2.1 and 2.2.

Theorem 2.1. The system is queue-stable if, for n(t)
with ‖n(0)‖ � 1, there exists a T < ∞, such that ∀t � T ,
n(t) = 0.

Theorem 2.2. The system is rate-stable if, for n(t) with
n(0) = 0, we have n(t) = 0, ∀t � 0.

Note the difference between queue and rate stability.
Queue stability requires that for non-negative initial value,
the number of active sessions in the fluid-limit should
become empty within a finite time and remain empty. Rate
stability requires that for zero initial value, the number of
active session continue to be zero.

Combining with the above technique, the stability result
of α-fair allocations can be proved by choosing a suitable
Lyapunov function V (n(t)), for example,

V (n(t)) =
∑
s∈S

µ−1
s ρ−α

s

(ns(t))α+1

α + 1

An immediate extension is to allow a general convex rate
region. An example is the rate region in wireless system
with the TDMA scheduling, where the rate region is the
convex hull of the possible rate point that can be allocated
instantaneously. For a convex rate region R, it is proved
in Reference [21] that the rate region is also the stability
region for α-fair allocations, α > 0.

2.2.2. No time-scale separation assumption

In some networks, session level stochastic may operate on
a faster timescale, with the arrive-and-depart process of
sessions varying constantly. Hence, the assumption on
instantaneous convergence of the resource allocation
algorithm, with respect to session arrivals, may not hold.
Session-level stability without the timescale separation
assumption is studied in References [12, 13].

The work in Reference [12] considers a dual congestion
controller used at the sources, which forms part of a
distributed solution of NUM. Time is divided into discrete
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slots of length T, indexed by k. Then, the system dynamics
with respect to a class s are given by

φs(t) = φs(kT ) = min

{( ∑
l∈L

Rlsq
l(kT )

)−1
α

, Ms

}
(3)

where

ql((k + 1)T )

=
[
ql(kT ) + εl

(∑
s∈S

Rls

∫ (k+1)T

kT

Ns(t)φs(kT )dt − Tcl

)]

(4)

where Rls is the (l, s)th entry of the routing matrix of R, εl

is the step-size used at the link l, and Ms is the upper-bound
of transmission rate of class s. Note that the session-level
dynamics induces change of Ns(t) in Equation (4), which is
in turn reflected in the congestion control in Equation (3).
It is proved in Reference [12] that, for α � 1, sufficiently
small step-size εl leads to the maximum stability region of
α-fair allocations. The case for α < 1 is unclear.

We briefly summarise a key methodology in the proof.
Recall that for the case for timescale separation earlier,
the fluid-limit of the original system is derived, and then
it is showed that such a fluid-limit is stable, leading to
stability of the original system. However, without timescale
separation, the fluid-limit of the original system represented
by the dynamics of Equations (3) and (4) cannot be
derived for technical reasons. Instead, the authors directly
find a Lyapunov function and to use the Foster’s criterion
in the proof of stability. The difficulty of finding an
appropriate fluid-limit of the original system is tackled
differently in Reference [13] where an upper-bound on the
quantity Ns(t)φs(t) is assumed. Then, the fluid-limit can be
established, but at the expense of assuming such a bound.

2.2.3. General non-convex rate region

There are also many practical scenarios in which the
rate regions are non-convex, usually due to the limited
capability of the underlying resource allocation algorithm.
For example, random access may lead to continuous but
non-convex rate region, and quantized levels of parameter
control lead to discrete, thus non-convex, rate region.

For non-convex rate regions, it is generally impossible
to derive an explicit and exact stability condition. This
is mainly due to the fact that the stability condition
depends on detailed statistical characteristics of the session
arrival processes, as well as the session departure processes

determined by the solutions of a non-convex optimisation
problem. Some papers provide bounds on the stability
region for specific topologies under particular allocations,
see e.g. [22, 23]. Some other papers aim at providing exact
stability conditions: in [24–26], a recursive (with respect to
the number of session classes) stability condition is given
for a particular class of networks, including those studied
in References [22, 23].

In networks with only two classes of sessions and a
discrete rate region, the stability condition of a large class
of allocations, including α-fair allocation, is characterised
in Reference [27]. The stability region of α-fair allocation,
for α > 0 is the smallest coordinate convex set ‡ containing
the contour of Rα, where Rα is the set of rate vectors that
could be chosen by the α-fair allocation. In other words,
Rα corresponds to the set of rate vectors, say r, which is a
subset of the system rate region R, such that there exists a
state N with φ(N) = r.

Recently, the authors in Reference [20] characterise
sufficient and necessary conditions for session-level
stability for α > 0 in networks with an arbitrary number
of classes over a discrete rate region. In this case,
there exists a gap between the necessary and sufficient
conditions for stability. However, they show that these
conditions coincide when the set of allocated rate vectors
are continuous, leading to an explicit stability condition
for network with continuous non-convex rate regions,
summarised as follows. For continuous Rα, the stability
region of α-fair allocation is the smallest coordinate-convex
set containing c(Rα), where c(Y) denotes the smallest
closed set containing Y. Note that now the stability region
varies for different values of α.

We conclude this section by introducing a resource
allocation algorithm that achieves the maximum stability
region in an arbitrary fixed rate region. This policy is called
max-projection (MP) allocation [28]. For a given network
state N, the MP allocation allocates rates that solves the
following optimisation problem:

Maximise
∑

s
Nsφs

Subject to φ ∈ R (5)

However, this allocation is not utility-based, thus it does
not guarantee fairness of resource allocation. There also
may not be a distributed implementation of this kind of
allocation.

‡ A set Y ⊂ Rn+ is said to be coordinate-convex when the following is true:
if b ∈ Y, then for all a : 0 � a � b, a ∈ Y.
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2.2.4. General arrival and general file size distribution

Another important and challenging extension of the basic
stability result is to remove the unrealistic assumption
on Poisson arrivals and exponential file size distribution,
since these characterisations have been proved false in
many network measurement studies. For general arrivals,
proving stability conditions becomes much more difficult
than the case of assuming exponential file size distribution.
Reduction to positive recurrence of Markov chain no longer
works, and keeping track of the residual file size is not
a scalable proof technique. New fluid limit needs to be
established and new Lyapunov functions constructed.

Using the technique in References [9, 14] relaxes the
assumption of Poisson arrivals, by studying a general
stationary and a bursty network model. In Reference [29],
a fluid model is formulated for exponentially distributed
workload to study the ‘invariant states’ as an intermediate
step for obtaining diffusion approximation for all α ∈
(0, ∞). In Reference [18], the fluid model is established
for α-fair rate allocation, α ∈ (0, ∞), under general
distributional condition on arrival process and service
distribution. Using this fluid model, they have obtained
characterisation of ‘invariant states’, which led to stability
of network under α-fair allocation, α ∈ (0, ∞), when the
network topology is a tree.

For general network topologies, three recent works have
tackled this difficult problem of stochastic stability under
general file size distribution, for different special cases of
utility functions; Reference [15] establishes stability for
max–min fair (corresponding to α → ∞) rate allocation,
and Reference [17] establishes stability for proportional
fair (corresponding to α = 1) rate allocation for Poisson
arrival and phase-type distribution. Using the fluid model in
Reference [18] but under a different scaling, Reference [19]
establishes the rate stability of α-fair allocation for general
file size distribution for a continuum of α: α sufficiently
close to (but strictly larger than) 0, and a partial stability
results for any α > 0 fair allocation policy. It is also proved
that α-fair allocation is rate stable over convex rate region
scaled down by 1/(1 + α), for all α > 0, general topology
and possibly different utility functions for different users.
The general problem of session-level stability remains open.

3. PACKET-LEVEL DYNAMICS

Packet-level actions take place in a network by various
means: (i) uncontrolled flows such as real-time traffic
and short-lived ‘mice’ traffic, (ii) burstiness of packet

arrivals due to application protocols, (iii) probabilistic
packet marking and dropping in active queue management
(AQM) algorithms and (iv) other randomness residing in the
protocol implementation and feedback signals. In studying
the effect of these packet-level random factors on the
network, most of the research investigate the system in the
asymptote of large-scale network.

3.1. NUM with packet-level randomness

In Reference [30], the authors prove that stochastic delay-
difference equations, which model primal-based congestion
control algorithm under stochastic noise, converge to
a deterministic functional differential equation. In other
words, the trajectory of the average rate (over flows) at the
router converges to that of the deterministic model with the
noise replaced by its mean. Mathematically, this is given by

ẋ(t) = κ(ω − x(t − d)p(x(t − d) + a))

where x(t) is the average transmission rates, a is the mean
of stochastic noise, d is the round-trip delay, κ and ω are the
constants of a primal algorithm achieving proportional-fair
controller [2] and p(·) is the marking function at the router.

To enable tractable analysis and scalable simulation,
many of the works on NUM use deterministic fluid approx-
imations. The result in Reference [30] provides an evidence
of confidence that such a deterministic approximation
can be valid, at least for log utility functions over a
single-link with homogeneous delay. The convergence to a
deterministic fluid differential equation occurs over a finite
time horizon, and convergence for the infinite time horizon
is also proved under additional technical conditions.

The work in Reference [30] is extended to ‘TCP-like’
controllers in Reference [31]. The TCP-like controller
corresponds to a rate-based controller that resembles
the congestion avoidance phase of TCP. The authors
in Reference [31] still assume a single link with
homogeneous delay, but their results are weaker than those
in Reference [30] in the sense that the convergence occurs
only ‘asymptotically’ in the number of flows and in time, as
opposed to the path-wise convergence in Reference [30].
The asymptotic convergence means that the equilibrium
transmission rate of each flow in the scaling system con-
verges to the fixed point solution of the deterministic differ-
ential equation. The authors in Reference [31] show that the
global stability criterion for the deterministic system based
on a differential equation is also a global stability condition
for the stochastic system with multiple flows. This leads to
implication that the parameter design (for stability) can be
studied based on the deterministic version of the model.
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Other works also provide justifications for the use of a
deterministic feedback system model. Both Reference [32]
and [33] use stochastic models in their papers to capture the
randomness by mice flows, probabilistic marking in AQM
and marking quantization errors.

In Reference [33], the authors characterise queue fluctu-
ations using Central Limit Theorem based approximation
to include the variance properties of the router queues
in the analysis. This paper proves that, as the number
of flows becomes large, the AQM queue dynamics can
be accurately approximated by a sum of a deterministic
process and a stochastic process. Further, the recursion of
the deterministic process depends only on the capacity of the
bottleneck link and the expected traffic arrival, which help
justify the use of a deterministic feedback system model to
study the expected queue behaviour.

On the other hand, in Reference [32], a detailed stochastic
model is presented for N TCP Reno sources sharing a single
bottleneck link with capacity Nc implementing random
early detection (RED). They show that as the number
of sources and the link capacity both increase linearly,
the queue process converges to a deterministic process
described by differential equations as usually assumed in
the congestion control literature. Even though these results
are proved only for a single bottleneck node, they provide
some justification for the popular deterministic fluid model
by suggesting that the deterministic process is the limit of
a scaled stochastic process as the number of flows and link
capacities scale to infinity.

One of the sources of randomness in the Internet is
the set of real-time flows that require a certain QoS, e.g.
packet loss probability. The authors in Reference [34]
examine the effect of congestion control mechanism on
the QoS of real-time flows. In particular, they study the
relation between ‘aggressiveness’ of marking functions at
the intermediate router and the achieved QoS for real-
time flows. The aggressiveness, parameterised by some
constant, is captured in the name of elasticity of marking
functions, which intuitively corresponds to the slope of
marking function at the equilibrium point. The following
two tradeoffs are studied:

(1) Stability-elasticity tradeoff. The more elastic the
marking function is, the better is the QoS guarantee
of real-time flows. However, this also leads to a smaller
maximum allowable end-to-end delay that guarantees
stability [35].

(2) Scheduling-elasticity tradeoff. Given the equilibrium
point of controlled flows and the QoS for real-time
flows, two queueing mechanisms are considered: first-

in-first-out (FIFO) and priority. In priority queueing,
there are two separate queues for controlled and real-
time flows, and the absolute priority is given to real-time
flows, as long as there are packets to serve in that queue.
The authors show that one can achieve the same QoS
performance for the real-time flows with the simpler
queueing of FIFO as that with more complex queueing
of priority, by employing more aggressive marking
functions.

In the above analysis, there are two different timescales to
consider: one at the routers and another at the sources. The
first option is to view the system at the timescale of sources.
This timescale is N times ‘slower’ than that of the router
dynamics, since for every packet transmitted by an end-user,
there are N packets that arrive at the intermediate router.
Over any fixed time interval (i.e. time is not scaled), one
can view the queue as a multiplexer over a large number of
random, open-loop flows (e.g. real-time flows), leading to a
deterministic limit in the large number of flows regime. The
research in References [30, 31, 34] mainly considers this
end-system time-scale. In References [30, 31], the authors
study the fluid-limit of the system from the viewpoint of
the controlled flows, and the open-loop flows appear as a
constant rate process, with the rate equal to the expected
value of the uncontrolled arrival process. On the other hand,
the work in Reference [34] tries to model the behaviour of
an open-loop end-user, at the timescale of the end-system.
It considers the tail probability for open-loop flows as the
performance metric of a real-time flow using large deviation
techniques.

The other option is to look at the system behaviour from
the viewpoint of the router. As the number of flows and
router capacity increase, the timescale of queue becomes
faster. In this regime, by appropriately ‘slowing-down’
time at the router, it is shown that the uncontrolled arrival
processes can be modelled by a Poisson process [36], and
there is much work [37–39] in understanding the queueing
dynamics at this timescale in routers. Understanding the
behaviour of router queues is also crucial to buffer-sizing
questions, i.e. what amount of buffer space is needed to
achieve sufficient multiplexing gain. We will discuss the
buffer-sizing issues later in Subsection 6.3.

3.2. Application-layer burstiness

Another aspect of packet-level stochastic models is to
understand the effect of application-layer burstiness on
NUM-based congestion control at the transport layer.
For example, in Reference [40], the authors consider a
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single link with capacity Nc (bits) shared by N HTTP
flows consisting of J classes, where the number of class
j connections is θjN, θ1 + · · · + θJ = 1. Flow class j
alternates between think times and transfer times with
different mean think time, Īj, and average amount of data,
B̄j, during transfer times. During the period of a think
time, a flow does not require any bandwidth from the link.
Immediately after a period of think time, the source starts
to transmit a random amount of data by a TCP connection.
The transfer time depends on the amount of download data
and the bandwidth allocation to this flow by TCP.

Let Qj(t) and Xj(t) be the number of class j connections
and the amount of bandwidth received by a class j
connection during transfer times, respectively. Then, Xj(t)
is allocated by solving the following optimisation problem

maximise
∑J

j=1
Qj(t)Uj(Xj(t))

subject to
∑J

j=1
Qj(t)Xj(t) = Nc (6)

The number of active flows is random, but at any time, the
active flows share the link capacity according to a transport
layer resource allocation algorithm as in Equation (6). Let

ρj = B̄j

Īj

, Yj(t) = Qj(t)Xj(t)

Nθj

i.e. ρj is the load of connection j, and Yj(t) is the average
bandwidth received by class j connections at time t. Then,

lim
N→∞

Yj(t) = y∗
j , a.s.

where y∗
j is the solution of

maximise
∑J

j=1
θjÛj(yj)

subject to
∑J

j=1
θjyj = c

where

Ûj(yj) = ρj − yj

ρj

Uj

(
yjρj

ρj − yj

)

Furthermore,

lim
N→∞

Xj(t) = x∗
j , a.s.

where

x∗
j =

ρjy
∗
j

ρj − y∗
j

Figure 3. Characterising bandwidth sharing in HTTP [40], with
a combination of transfer time and think time, through utility
function Û, which is induced by TCP rate allocation through NUM
with utility function U.

The above results state that the average throughput y∗
j ,

i.e. the throughput aggregated over active flows of each type
normalised by the total number of flows of that type, also
solve a utility maximisation problem with an induced utility
functions Ûj(·) at the transport layer (see Figure 3).

3.3. Stochastic noisy feedback

In the research on distributed implementation of the
NUM problem, mostly feedbacks are assumed to be
perfectly communicated among the network elements.
However, in practice, perfect feedback is impossible, mainly
due to probabilistic marking and dropping, contention-
induced loss of packets, limited size of messages, etc. In
Reference [41], the authors study the impact of stochastic
noisy feedback on distributed algorithms, where they first
consider a primal-dual algorithm in the following general
form

xs(t + 1) = [
xs(t) + ε(t)(Lxs (x(t), λ(t)))

]
D

λl(t + 1) = [
λl(t) + ε(t)(Lλl

(x(t), λ(t)))
]∞

0

where xs is the source transmission rate of session s, λl is
the shadow price, L is gradient update, ε is step size and
[·]D is the projection onto the feasible set D.

Noisy feedback adds noise to the gradients Lxs and Lλl
,

which become stochastic. Two cases are considered for
analysis:

(1) Unbiased feedback noise. When the gradient estimator
is unbiased, it is established, via a combination of
the stochastic Lyapunov Stability Theorem and local
analysis, that the iterates generated by distributed
NUM algorithms converge with probability one to an
optimum, under some standard technical conditions. In
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general, the limit process of the interpolated process
based on the normalised iterate sequence is a stationary
reflected linear diffusion process, not necessarily a
Gaussian diffusion process.

(2) Biased feedback noise. In contrast, when the gradient
estimator is biased, the iterates converge to a contraction
region around the optimal point, provided that the
biased terms are asymptotically bounded by a scaled
version of the true gradients. These results confirm those
derived based on deterministic models of feedback with
errors [42, 43].

The primal-dual algorithm has only a single timescale
in terms of source and link updates. However, there
exist various decomposition methods, leading to different
distributed implementations and also different timescales
of updates by various network elements. Also in
Reference [41], the authors study a primal-decomposition
based algorithm with multiple timescale algorithms. For
two-timescale algorithm, with faster timescale for source
rate update and shadow price update and slower timescale
with link contention probabilities, convergence under noisy
feedback is established. In the case when the gradient
estimator at the faster time scale is unbiased and at
the slower time scale is biased, the algorithm converges
to a contraction region. When comparing alternative
decompositions with different timescales, robustness to
stochastic dynamics can be used as one of the metrics.

4. CONSTRAINT-LEVEL DYNAMICS

4.1. Overview

Consider a constrained queueing system with exogenous
arrivals that are not infinitely backlogged but follows
a certain stochastic process with finite mean. In
Reference [44], Tassiulas and Ephremides developed
a control policy, called throughput-optimal policy, that
maximises the arrival rates subject to queue stability.

Now consider the case where the arrivals are random
but outside the stability region, and a certain amount of
utility is defined for transmission of a unit volume of data.
Combining the NUM framework with stability requirement
is generally non-trivial, due to the fact that rate regions are
difficult to characterise by distributed controllers, and can
be time-varying in some networks. This section discusses
this research topic that is often referred to as ‘utility
maximisation subject to stability’.

The general problem formulation in this topic is given by
the following optimisation problem

Maximise
∑

s
Us(x̄s)

Subject to x̄ ∈ 
 (7)

where x̄ is the long-term rate vector, averaged over
instantaneous rate x(τ) at time τ, i.e.

x̄s = lim
t→∞

1

t

∫ t

τ=0
x(τ)

and 
 is the maximum stability region. It is the set of arrival
rates for which there exists a control policy to stabilise the
system, and may not be known to the distributed controllers.

The problem formulation is similar to Equation (2).
But the formulation represented by Equation (7) assumes
random traffic arrivals. Furthermore, here 
 is either the
‘average’ of the instantaneous rate regions for time-varying
systems or the convex hull of discrete rate sets. In such
a case, it is required to develop a control mechanism that
is unaware of 
, the statistics of the arrivals, or the time-
variations of the instantaneous rate region.

If the stochastic arrivals are inside the stability region, it
suffices to stabilise the system, since the policy stabilising
the system also achieves the maximum utility under a
reasonable assumption on monotonicity of utility functions.
Therefore, the problems considered in the rest of this
section assumes that the arrivals are outside of the stability
region. Later, in Subsection 4.4, we will mention a different
model, where even for the arrivals inside the stability
region, stabilising the system is not equal to maximising
the achieved utility.

4.2. Wireless cellular networks

Utility maximisation under random channel fluctuations is
first studied for cellular networks [45–48], with an objective
of achieving proportional fairness. This is generalised in
Reference [49] by to other forms of utility functions.

Consider a discrete, slotted-time model in a wireless
cellular system with multiple users, where the channel
conditions are time-varying, following a certain stochastic
process (S(t))∞t=0. Note that S(t) at time t is a vector of the
channel state seen by each mobile user, and assumed to hold
over one timeslot. This means that the timescale of channel
variations is equivalent to that of packet-level resource
allocation policy. If this time-varying channel process has a
stationary distribution π, then the steady-state average rate
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region is given by


 �
∑

channel state i

πiRi (8)

where πi is the stationary probability that the instantaneous
rate region R(t) is the ith rate region Ri.

The optimisation problem (7) can be solved using the
standard stochastic gradient algorithm, from which the
algorithm can be described by choosing the rate allocation
vector x(t), such that

x(t) ∈ arg max
r∈R(t)

∇U(x̂(t))T r (9)

Here, x̂(t) is the moving averaged service rates, updated as
follows:

x̂(t + 1) = x̂(t) + ε(t)(x(t) − x̂(t))

where ε(t) is the step size at time t.
It is proved that this algorithm is asymptotically optimal,

i.e. when ε(t) → 0, the algorithm in Equation (9) converges
to an optimum of (7). In spite of the asymptotic optimality
with respect to the utility, there are situations where the
algorithm in Equation (9) cannot stabilise the system for
any constant step-size ε(t) = ε, for random arrival inputs
that are within the maximum stability region [50].

This case of maximising the long-term aggregate utility
over time-varying channels shows that maximising utility
may not guarantee system stability on its own. We need
a different control policy to achieve utility maximisation
subject to system stability, which we summarise in the next
subsection in a more general system model.

4.3. Wireless ad hoc networks

In this subsection, we survey the resource allocation
research [51–56] that maximises aggregate utility subject
to stability through joint congestion control, scheduling and
routing in wireless ad hoc networks.

Similar to wireless cellular systems in the previous
section, the channel is again assumed to be fixed within a
discrete timeslot but changes randomly and independently
across slots. We denote by R(t) as the link-level rate
region at t. The end-to-end throughput-region 
 (i.e. the
constraint set in Equation (7)) is given by the set of end-
to-end transmission rates x, such that at every node, flow
conservation is satisfied with the link capacities in the
average link rate region

∑
channel state i πiRi. To avoid

notational confusion, we remark that 
 in Equation (8)

Figure 4. Illustration of joint congestion control, routing and
scheduling, through a back-pressure based algorithm that solves
the NUM in node-based representation.

corresponds to both the end-to-end throughput-region and
the average link rate region, since it is a single-hop cellular
system.

There are two types of formulations, and the associated
distributed algorithms, for utility maximisation subject to
stability: (i) node-based [51, 53, 55, 56] and (ii) link-
based ones [52]. In a node-based algorithms, which we
focus here, each node installs separate queues for each
session, and sources adapt their transmission rates based
on the congestion price at each source node itself. As will
be described shortly, this price essentially corresponds to the
queue length for the source node. Node-based algorithms
can operate based on only the price at each source node
because of the ‘back-pressure’ mechanism: the congestion
prices at an intermediate nodes are indirectly transferred
to the source in an hop-by-hop manner. In contrast, in a
link-based algorithm, each source controls its rates based
on the aggregate sum of prices over its path. Technically,
link-based algorithm works only when routing is fixed. In
the problem of joint congestion control, scheduling, and
routing, node-based algorithms are more suitable, but at the
expense of maintaining per-session queues at each node.
Another advantage of node-based algorithms is that it does
not need to assume that the arrival rates are instantaneously
available at each nodes, unlike the link-based algorithms.

As illustrated in Figure 4, the node-based back-pressure
algorithms have three different components: (i) source
congestion control, (ii) routing and (iii) scheduling.
Scheduling determines the rate schedule assigned to be
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links, and routing deals with how to share the scheduled rate
over the sessions on each link. We first describe routing and
scheduling common to all the algorithms, and then elaborate
on the slight differences on source congestion control.

� Routing: At timeslot t, on each link l, serve the session
that has the maximum differential backlog, i.e.

s∗l (t) = arg max
s∈S

(Qs,tx(l)(t) − Qs,rx(l)(t)) (10)

where tx(l) and rx(l) are the transmitter and the receiver
of a link l, respectively, and Qs,v(t) denotes the length
of the session s queue at node v at slot t. Let Ql(t) be the
differential backlog of session s∗l (t), i.e.

Ql(t) = max
s∈S

(Qs,tx(l) − Qs,rx(l))
� Scheduling: At timeslot t, choose the link rate schedule

r(t) that maximises the aggregate weight, i.e.

r(t) = max
r∈R(t)

∑
l∈L

Ql(t)rl (11)

Then, the service rate rl(t) is applied to serve the session
s∗l over link l.

It is easy to solve the problem in Equation (10)
using only local information. However, the problem in
Equation (11) is generally hard to implement, and may
not be solvable in a distributed manner with reasonably
low complexity, unless special structures of the rate region
R(t) is specified and exploited. We will further discuss low
complexity, distributed implementation of link scheduling
in Subsection 6.4.

For source rate control, there are dual-controller [51,
53, 55] and primal-dual controller [54, 56, 57]. These
two types of congestion controllers are first studied in the
wired Internet congestion control (see [58–60] for details).
Briefly speaking, a dual controller consists of a gradient-
type algorithm for shadow price updates and a static source
rate algorithm, i.e. two different timescales for shadow
price updates and source rate updates. In the primal-dual
algorithm, the source rates and the shadow prices are
updated at the same timescale.

4.3.1. Dual source controller

There are two forms of dual controller algorithms, which
turn out to be essentially the same: 1) using queue lengths
directly, and 2) using shadow prices.

(1) Using queue length directly: In Reference [53], it
has been proposed that each session s performs the

following:

xs(t) = arg max
ys

(VUs(ys) − ysQs(t)) (12)

where V is a constant parameter, and Qs(·) is the queue
length of the source node of session s. Differentiating
Equation (12), the source rate for session s are
determined by

xs(t) = U ′−1
s (Qs(t)/V ) (13)

(2) Using price: In Reference [55], the source controller
adjusts its transmission rate by computing

xs(t) = U ′−1
s (λs(t)) (14)

where λs(t) is the aggregated shadow congestion price
value over the link paths of the session s, and obtained
by dual decomposition of the original problem in
Equation (7).

In Reference [53], the timeslot length (i.e. timescale of
source-rate update) is fixed, and the system is parameterised
by V. On the other hand, in Reference [55], the timescale
of source-rate update is scaled by the step-size.

By choosing sufficiently large V (or sufficiently small
step-size), the achieved utility, denoted by Ū, can be made
arbitrarily close to the optimal utility U∗. The scaling law
on the difference between Ū and U∗ is linear [53]

U∗ − Ū � O(1/V )

4.3.2. Primal-dual source controller

In this type of controller, the sources do not compute their
transmission rate in one shot, instead, the transmission rates
are also updated by the following equation [56]

xs(t + 1) = [
xs(t) + γ(KU ′

s(xs(t)) − Qs(t))
]M
m

where γ is the parameter which determines sensitivity to
queue length changes (i.e. rate of convergence), and K is
the parameter which determines the distance between the
optimal utility point and the achieved utility, similar to
the parameter V in Reference [53]. Here, [x]Mm refers to
the projection of x over the interval [m, M].

The authors in References [54, 57] also study a similar
primal-dual type algorithm, called greedy primal-dual
(GPD), under a very general system model, motivated by
the stochastic gradient algorithm in Subsection 4.2. For
simplicity, by assuming separability of the utility function
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w.r.t. the source rate vector, at timeslot t, the source of
session s chooses the transmission rates xs(t), such that

xs(t) = arg max
ys∈Ys(t)

(
U ′

s(x̂s(t)) − βQs(t)
) × ys

where the running average x̂s(t) of xs(t) is updated by

x̂s(t + 1) = (1 − β)x̂s(t) + βxs(t), 0 < β < 1

The setYs(t), which is time-varying, refers to the set of pos-
sible transmission rates of the session s at time t. The basic
idea is to greedily maximise the first order increment of∑

s

Us(xs) − 1

2
β

∑
s

Q2
s

For the algorithms introduced so far, stability and
optimality are proved, where optimality can be adjusted
by choosing the parameter appropriately, i.e. a parameter
which determines the distance between the optimal utility
point and the achieved utility in the algorithm mentioned
so far (i.e. V in Reference [53], K in Reference [56]
and the step-size in Reference [55]). The stability proof
is based on the Markovian structure of the system
and an appropriate Lyapunov function, e.g. L(Q(t)) =∑

s,v Q2
s,v(t) or L(Q(t)) = ∑

l Q
2
l (t).

However, there may be some cost for large K and V, such
as delay [53, 61]. This tradeoff can be represented by

average queue lengths � O(f (V ))

achieved utility � U� − O(1/V )

[61] shows that f (V ) can also be a logarithmic function, and
this logarithmic tradeoff is the best utility-delay tradeoff
with respect to the parameter V, under some additional
technical assumptions.

4.4. Other models

In the last part of this section, we discuss a related research
with a slightly different problem formulation, where even
for arrivals inside the throughput-region, stabilising the
system is not equivalent to optimising the utility.

In Reference [62], the authors consider a constrained
queueing system with random arrivals. Consider a schedule
set S, where a link schedule S ∈ S is a set of links that
can be scheduled simultaneously. Each session is assumed
to traverse a single-hop link, and there is no time-varying
channel variations.

Denote by S ∈ {0, 1}L as a binary vector where Sl = 1
if link l is scheduled. We use the notation l ∈ S, if Sl = 1.
Consider an arrival rate vector inside the convex hull of S,

the achieved long-term utility is defined by

lim inf
t→∞

1

t

t∑
τ=1

∑
l∈L

Ul(S(τ))Sl(τ) (15)

Different from Equation (7), in Equation (15), the total
utility is the long-term average of the instantaneously
achieved utility rather than the utility of the long-term
average service rate. These two quantities are not equivalent
unless the utility function is linear. Also, in Equation (15),
the utility achieved by the link l is a function of the entire
schedule. Due to these differences, even for the arrivals
inside the throughput-region, control decision at each time-
slot becomes different in order to maximise utility subject to
stability; the controller chooses the schedule S∗, such that

S∗ = arg max
S∈S

∑
l∈S

(
Ql(t) − V (Umax

l − Ul(S))
)
Sl (16)

where V is a constant parameter, and Umax
l is a given

constant and, the maximum possible utility of link l that
can be achieved by any schedule.

5. COMBINATIONS OF MULTIPLE DYNAMICS

So far, we have surveyed the wide range of questions
raised in stochastic network utility maximisation, under
the three headings of session, packet and constraint-level
models. Combinations of more than one type of stochastic
models also naturally arise. We focus on the question
of session-level stability of NUM with a time-varying
constraint set in this section.

5.1. Timescale possibilities

Recall the notation for timescales in Section 1:

(1) Ts: session arrivals,
(2) Tc: constraint set variations,
(3) Tr: convergence of resource allocation algorithm.

We first assume a timescale separation between conver-
gence in resource allocation algorithm and session-level
dynamics, i.e. Tr << Ts, as assumed in most of Section
2. Then there are three possibilities of timescale separation
across Ts, Tc and Tr, depending on the timescale of Tc.

(1) Fast regime (Tc << Tr << Ts). This corresponds to
fast variations of rate regions due to fast channel fluctu-
ations. In this case, even resource allocation algorithm
does not track resource variations, but only sees the
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average of time-varying resource. The stochastic nature
of resource variations are masked and invisible to
resource allocation algorithms and session-level dy-
namics. Therefore, we will not discuss this case further.

(2) Intermediate regime (Tr ≈ Tc << Ts). When the
timescales of rate region variations and the resource
allocation algorithms are similar, the resource alloca-
tion algorithms can harness the rate region variations,
by allocating resource opportunistically. A typical
example of such systems is channel-aware scheduling
in cellular networks [47, 63], where fading variations of
the channels are exploited to achieve more throughput.

(3) Slow regime (Tr << Tc ≈ Ts). When the rate region
variations are not that fast, and similar to the session-
level dynamics, being opportunistic becomes more
difficult and these variations can be exploited only
at the expense of compromising delay perceived
by sources. This regime is encountered due to, for
example, slow mobility in wireless networks and link
failures in wired networks.

5.2. Intermediate regime

In Reference [64], opportunistic scheduling is employed,
i.e. giving higher priority to users experiencing better
channel state. Due to this opportunism, total throughput
across users also increases, as the number of users increases.
Then, assuming that the entire total throughput is evenly
distributed to the active users, the system can be modelled by
a multi-class processor sharing queue, from which session-
level stability and other related performance metrics such
as mean duration time are analysed.

We mention the work of Lin and Shraff [12] in this
Subsection, it studies the session-level stability at the
intermediate regime in wireless multi-hop networks, but
without timescale separation assumption between session-
level dynamics and the resource allocation algorithms, i.e.
Tr ≈ Tc ≈ Ts. It is proved that the maximum stability of
α-fair allocation still holds for this case for α � 1. The
intuition and methods are similar to that discussed in
Subsubsection 2.2.2.

5.3. Slow regime

Recently, [20] studies the session-level dynamics for
slow regime (Tc ≈ Ts), where time-varying rate regions
{R(t)}∞t=0 are modelled by a stationary and ergodic process.
Then, the entire system can be modelled by an augmented
Markov chain with states (N(t),R(t)). We denote by π the
stationary distribution of {R(t)}, i.e. Pr{R(t) = Ri} = πi,
i ∈ I, for some index set I.

They first characterise the maximum stability region,
given by

R =
∑
i∈I

πiRi (17)

It is proved that this maximum stability region is achieved
by the max-projection policy described in Equation (5). In
summary, the max-projection policy achieves the maximum
stability region, irrespective of the shape and time-variation
of rate regions.

Next, to study the stability region ofα-fair allocation, they
develop a fluid-limit model of the augmented Markovian
system, and characterise the stability region of α-fair
allocations by this fluid-limit model.

The evolution of the system fluid limit is given by

dns

dt
= λs − µs

∑
i∈I

πiφ
(i)
s (n), ∀s ∈ S (18)

In contrast to the fluid model for a fixed rate region, the
possible service rate for an α-fair allocation in the fluid limit
is the average of the allocated rate vectors in the various rate
regions. It is natural to examine the following set:

∂Rα =
{

φ : ∃n ∈ RS
+, φ =

∑
i

πi × φ(i)(n)

}

This is the set of all possible service rate vectors in the fluid
limit. Define the average rate region in the fluid limit for
the α-fair allocation as the smallest coordinate-convex set
containing ∂Rα, i.e.

Rα = {y : ∃x ∈ ∂Rα s.t. 0 � y � x} (19)

The stability region for α-fair allocations is given by the
following result: for all α > 0, the stability region of the
α-fair allocation for time-varying rate region is Rα.

Similar to the case for non-convex rate regions, it is
proved that stability region depends on α. The proof
technique resembles that in non-convex rate regions, where
the authors first use necessary and sufficient conditions
for discrete time-varying rate regions, and prove that they
coincide for continuous time-varying rate regions.

Even though the fluid model based stability region is not
in closed form, it helps with deriving various properties
and relations of stability regions in α-fair allocations. In
particular, for two-class network, the authors characterise
the pattern of dependence of stability region on α, by
proving that there exists a tradeoff between fairness and
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Figure 5. A wired network with link failures, allowing multi-path
routing with flow-splitting.

stability, i.e. fairness can be enhanced at the expense of
reduced network stability. LetRα denote the stability region
for α-fair allocation. Then, the stability regionRα decreases
as α increases, i.e. Rα1 ⊂ Rα2 if α1 > α2. This is in sharp
contrast to the case of fixed and convex rate regions, where
fairness has no impact on stability.

As an example, consider a wired network with time-
varying rate regions due to link failures. Different sets of
broken links generate various link failure states, which
in turn defines time-varying rate regions. We consider
a network that allows the multi-path routing with flow
splitting. The time-varying rate regions induced by link
failures are illustrated in Figure 5, where the probability of
each rate region is same, i.e. π1 = π2 = π3 = 1/3. Figure 6
shows the change of stability regions for different values of
α, where we observe the dependence of the size and even
convexity of the stability region on the choice of α.

Figure 6. Stability regions for the example above.

6. RELATED WORK

There are several important topics of study that are highly
related to the motivations and methodologies in stochastic
network utility maximisation. For example, sometimes
deterministic optimisation formulations can be derived
from the limiting regime of stochastic network optimisation,
as in the case of social welfare maximisation for loss
networks in Reference [65, 66]. This section discusses four
areas of related work.

6.1. Integrated network with elastic and
real-time traffic

There are increasingly more real-time streaming flows on
the Internet. Recall that the elastic flows are characterised
by its file size. In contrast, streaming flows are typically
characterised by its holding time (i.e. flow duration). The
file size received within the required delay bound can be
different.

To consider both elastic and streaming flows in one
framework, an extension of the system model in earlier
sections becomes necessary. First, we denote by λ

(e)
s the

intensity of Poisson arrival process of session-s elastic
flows, and use 1/µs as the mean of its exponential file size.
The streaming flows of session s arrives again according to a
Poisson process with intensity λ

(s)
s , and has its flow duration

exponentially distributed with mean 1/hs. We denote by
M(t) the vector of the numbers of streaming flow in the
system, and continue to use N(t) for elastic flows.

Then, the system can be modelled by a Markov chain
with states (N(t), M(t)), where the transition rates are

(Ns(t), Ms(t)) → (Ns(t) + 1, Ms(t)), with rateλ(e)
s

(Ns(t), Ms(t)) → (Ns(t) − 1, Ms(t)), with rate

µsNs(t)φs(N(t) + M(t))

(Ns(t), Ms(t)) → (Ns(t), Ms(t) + 1), with rateλ(s)
s

(Ns(t), Ms(t)) → (Ns(t), Ms(t) − 1), with rate

hsMs(t)

Under this model, [67, 68] study sufficient conditions for
session-level stability, and investigates the effect of each
traffic type on the other. The elastic traffic places a load on
each link, such that the remaining capacity is fairly shared
by the streaming flows, whereas the streaming traffic is seen
as a change of capacity constraints by the elastic flows.
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6.2. Balanced fairness and insensitive
bandwidth sharing

One of the main advantages of α-fair allocation by NUM is
its amenability to distributed implementation. However, the
existing result on session level issues for α-fair allocation
is mainly on stability only. In other applications such as
capacity dimensioning or buffer sizing, one may need to
know performance metrics such as mean flow duration.
The steady state distribution of the system under α-fair
allocation is challenging to characterise and depends on
the traffic characteristics such as arrival process and file
size distribution. This motivates the research on insensitive
bandwidth sharing, where the performance metrics depends
only on the traffic intensity, denoted by ρ in Section 2.

The session-level model introduced in Section 2 can be
thought of as a network of S processor-sharing, where S
is the number of classes, and each queue corresponds to a
flow-class. An α-fair allocation corresponds to one way of
bandwidth sharing. The authors in References [21, 69] study
a different bandwidth sharing, called ‘balanced fairness’,
which is insensitive to traffic characteristics except for
traffic intensity. Through this bandwidth sharing policy,
we can easily compute the steady state distribution of the
number of flows, leading to explicit computation of the
expected flow duration time based on Little’s formula.

Definition 6.1. An allocation φ is said to be balanced if
for all pairs of classes i, j and all states x, with xi > 0 and
xj > 0, we have

φi(x)φj(x − ei) = φi(x − ej)φj(x)

where ei = (0, . . . , 1, . . . , 0) a S-dimensional {0, 1} vector
with only ith element being 1.

Then, the system can be described as a Whittle network,
and the distribution of the number of flows in each class is
given by

π(x) = π(0)�(x)ρx1
1 · · · ρxS

S

where � is called the balance function [21, 69].
The steady state distribution is now just a function of

traffic intensities, which helps us compute the mean number
of flows in the system. Furthermore, it is proved that,
for a resource allocation algorithm that does not satisfy
this balanced property, the stationary distribution should
be sensitive to all traffic characteristics. However, this
bandwidth sharing policy is not known to allow distributed
implementation.

Balanced fairness also does not lose stability regions. As
in α-fair allocation, for any convex rate region, balanced

fairness achieves the maximum stability region. The results
in References [21, 69] are extended to the case of light and
heavy loads to approximate the performance metrics in the
whole load range in Reference [70].

6.3. Buffer sizing and speed of variation
in network randomness

As discussed in Subsection 3.1, examining router timescale
is important to understand the required buffer size at
the routers. The buffer sizing question has recently gone
through much debate. Different limiting models can
be derived, depending on the different assumptions on the
speed of variations in network randomness. Again, we use
N to refer to the system scale.

Let B denotes the buffer size at the bottleneck router.
Buffer size scaling is studied based on the following three
regimes [39]:

(1) Small (or constant) regime: B = �(1), i.e. independent
of the system scale size N,

(2) Intermediate regime: B = �(Nβ), 0 < α < 1,
(3) Large regime: B = �(N).

Traditionally, backbone router design operates in the
large buffer regime [71], mainly due to the window-
based congestion control algorithm in TCP and its self-
clocking feature. However, recent experimental studies on
the buffer size scaling show that we can achieve enough
statistical multiplexing gain and high network utilisation in
the intermediate buffer regime [72] with β = 1/2, based on
the idea that a large number of independent TCP flows leads
to the normal distribution of the aggregate TCP window
size. In Reference [73], an even small buffer is enough in the
core routers, provided TCP is modified to reduce burstiness.
The main assumption in Reference [72] is that all N flows
go through a linear behaviour of TCP (i.e. congestion
avoidance), and the required minimum buffer is calculated
with an objective of full link utilisation. The small and
intermediate buffer regime is based on the intuition that,
with a large number of flows multiplexed at a large
capacity router, randomness help de-synchronise flows, thus
enabling full link utilisation without large buffer size.

The authors in Reference [74] raise some concerns
about reducing the buffer size from the large buffer
regime. They point out that the goal of the research in
Reference [72] is primarily full link utilisation. However,
extensive simulations show that loss rates range up to
5 − 15%, which harms certain real-time applications. They
argue that the buffer sizing question should be first
formulated with multiple objectives such as loss rate and
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delay bound, which may specialise into different regimes
of the required buffer size.

Regarding the speed of randomness in network, the
authors in References [37, 39] assume that the timescales
of randomness in both TCP and unresponsive flows are
in the same order. Thus, aggregate TCP and unresponsive
flows form a Poisson process with parameter (λ + x),
where λ and x are the mean arrival rates of unresponsive
and TCP flows, respectively. Therefore, the limiting system
is approximated by an M/D/1 system with capacity c and
Poisson input with parameter λ + x. On the other hand,
Reference [38] assumes that the randomness of TCP flows
happens at much slower timescale than that of unresponsive
flows, i.e. over a small interval of time, the mean arrival
rate of TCP flows looks constant. This assumption leads
to an M/D/1 system, but with capacity c − x and Poisson
input with parameter λ. The assumptions and models in
References [37, 39] can be viewed as a ‘conservative’
interpretation of the Internet. In contrast, the models
in Reference [38] analyse the Internet on a ‘optimistic’
assumption, i.e. the randomness of TCP flows due to
inter-packet jitter over a short time-interval can be ignored,
and the randomness of unresponsive flows is dominant.

6.4. Distributed scheduling in wireless
ad hoc networks

Distributed scheduling for medium access control is a
crucial part as a resource allocation mechanism in wireless
ad hoc networks. As an example, performance of a
scheduling algorithm affects the shape of time-varying or
fixed rate regions, which may lead to different stability
regions for NUM. As another example, in the research of
utility maximisation with system stability, scheduling forms
part of the joint congestion control, routing and scheduling
policy. It is also the bottleneck of distributed solution
to this joint optimisation. In this subsection, we briefly
survey research efforts on distributed implementation of
scheduling algorithms.

Scheduling in constrained queueing system with the
objective of throughput-guarantee dates back to the seminal
work by Tassiulas and Ephremides [44], where an algorithm
stabilising the system, whenever possible, is proposed in
the name of ‘max-weight’ algorithm. In the max-weight
algorithm, over each-timeslot, the scheduler chooses a
schedule (i.e. a set of activated links) that maximises the
sum of queue lengths in the scheduled links, referred to
as weight. However, the ‘max-weight’ scheduling requires
exponential computational complexity and centralised
computation. In fact, max-weight scheduling can be

reduced to a WMIS (Weighted Maximum Independent Set)
problem that is NP-hard.

To overcome the high complexity, Reference [75]
proposes a randomised algorithm, which we call pick-
and-compare approach in this paper, that still achieves
the maximum throughput-region, but only requires linear
complexity. This is based on the idea that finding an optimal
schedule (i.e. max-weight schedule) is not necessary at
each timeslot. For stability guarantee, it is enough to find a
reasonably good one with probabilistic guarantee of finding
an optimal schedule. These two seminal algorithms are
centralised, and has motivated many other subsequent work
on distributed scheduling algorithms.

We categorise distributed scheduling into three types:
(i) weight approximation, (ii) queue-length based random
access and (iii) infrequent computation of max-weight
schedule.

(i) Weight approximation. Maximal/greedy scheduling
[52, 76, 77–79] belongs to this category. Here, at each
timeslot the algorithms achieve the suboptimal weight,
and their throughput-region is provably γ fraction
of the maximum throughput-region. As an example,
greedy scheduling achieves the half of the throughput-
region under one-hop interference model §. The
authors in Reference [80] have proved that maximal
scheduling is a weight-approximating algorithm of
‘max-interference-weight’ scheduling that is defined
slightly different from max-weight scheduling, with a
different notion of weight.

(ii) Queue-length message based random access. One
of the drawbacks of even weight-approximating
algorithms above is that their complexity still grows
with the given network size. To overcome the limitation
and growing complexity with network size, queue-
length based random-access algorithms [81, 82]
have been proposed, requiring only constant com-
plexity and achieves performance close to maximal
scheduling.

(iii) Infrequent computation of optimal schedules.
Throughput-region, measured by stability region of
arrivals, is an asymptotic concept only. Intuitively,
it may be true that the same throughput-region can
be guaranteed by computing max-weight schedules
infrequently, not on every timeslot. For the bounded
number of arrivals over a timeslot, the queue-lengths
are Lipschitz-continuous in timeslots. Then, it
is guaranteed that the weight has only additive

§ In the M-hop interference model, the links within M hops interfere with
each other.
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suboptimal terms with respect to the weight of a
max-schedule, which does not affect the throughput.
Quantifying such intuition, the pick-and-compare
algorithm in Reference [75] reduces complexity
without affecting throughput, where frequency
of computation of optimal schedules is random.
Although throughput is not affected by this frequency
reduction, there may be some cost, such as delay, that
has to be paid. The work in Reference [80] studies
the three-way tradeoff between throughput, delay,
and complexity, through a parameterised general
framework that includes many of the scheduling
algorithms discussed in this subsection.

In recent studies in References [83, 84], the authors
develop families of scheduling algorithms that achieves
arbitrary throughput-region, and discuss the complexity-
efficiency tradeoff. In Reference [84], the authors propose a
family of distributed scheduling algorithm parameterised by
k and show that the algorithm k achieves k/(k + 2) of the
maximum throughput-region, under one-hop interference
model. The k-algorithm requires 4k + 2 rounds as control
overhead, where one round is measured by the time
for sending a message and receiving an ACK to and
from neighbouring nodes. The work in Reference [84]
has been extended to the case for the general M-hop
interference model in Reference [85]. The authors in
Reference [83] divide an entire graph into a disjoint subsets
of links, such that each subset does not interfere with
other subsets. With this ‘graph partitioning’ technique,
the schedule computation inside each component can
occur in a parallelised manner, leading to a reduction
of control overhead complexity. The similar idea of
graph-partitioning has been used in Reference [86]. The
distributed throughput-optimal algorithms assuming local
knowledge of arrival rates have also been proposed for
various interference models in References [87, 88]. In
Reference [80] mentioned earlier, the authors proposed
a framework to study the wide range of scheduling
algorithms in the research literature and characterized the
achieved tradeoffs in stability, delay, and complexity. These
characterizations reveal interesting properties hidden in
the study of any one or two dimensions in isolation.
For example, decreasing complexity from exponential
to polynomial while keeping stability region the same,
generally comes at the expense of exponential growth of
delays. Investigating trade-offs in the 3-dimensional space
allows a designer to fix one dimension and vary the other
two jointly.

7. OPEN PROBLEMS

While there have been substantial progress in formulating
and answering important questions in stochastic network
utility maximisation, there are still many open problems
and under-explored topics in this dynamic subject of study.
We outline some of these challenges in this section.

7.1. Session-level dynamics

First, as we can see from the summary in Table 1, it still
remains to prove session-level stability in the most general
model in terms of file size distribution, topology and rate
region. Further, it remains to study stability when the utility
functions are non-concave and model inelastic traffic.

Second, stability is an asymptotic concept only. Deriving
distributions on performance metrics, e.g. moments of mean
duration times or queue sizes, are more important in practice
and more challenging in theory.

Third, we mentioned that a recent result by Refer-
ence [20] shows that stability region in α-fair allocation
is sensitive to the choice of α for non-convex and time-
varying rate regions. More interestingly, the authors observe
a tradeoff between fairness and stability region, but only
prove the tradeoff for two classes of sessions. It remains
to answer the question whether this tradeoff can be proved
for arbitrary number of classes. Further, recall the max-
projection (MP) allocation that achieves the maximum
stability region regardless of the shape of rate regions. It
is an open problem to find ways of implementing the MP
allocation in a distributed manner.

Fourth, there is a mathematical need to develop a rigorous
fluid limit for the difference equations in discrete time-
slotted system model. This is important since, for example,
in the research without timescale separation [12] that uses
a discrete time model, the lack of fluid limit becomes an
obstacle in proving session-level stability results for α < 1.

7.2. Packet-level dynamics

Packet-level stochastic dynamics are generally too
complicated to model in a tractable way, which motivate the
research on validation of the applicability of deterministic
fluid models, some of which we summarised in Section 3.
However, most of the results are based on the study in
a large-scale regime, e.g. the number of flows and router
capacity go to infinity. But how many flows are ‘many
enough’ for such approximations to be useful in a finite
system? To answer this practically important question, we
first have to further quantify the accuracy of deterministic
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approximation schemes, and to consider how aggregate
traffic flows behave in different places of the network with
different multiplexing scale, e.g. core, metro or access
network. Answers to this question could in turn redefine
the boundary between access networks and core networks
in terms of the degree of multiplexing effect.

It would also be interesting to see if there exists a
tractable yet accurate enough model between packet-level
description and fluid approximation model. A related
issue is raised in the research on utility maximisation
subject to stability, where distributed optimisation and
stochastic theory are brought together. For example, the
dual subgradient update equation does not accurately
describe the queuing dynamics under session- and packet-
level stochastic dynamics, since there may not be
packets to be sent out of a node even when it is
allowed by the subgradient update equation. In general,
shaping of packet departure time by upstream routers
obviously impacts the arrival process in downstream
nodes.

A different topic is to study the interactions between
application layer protocols and NUM models for network
resource allocation. For HTTP, it would be useful to extend
[40] to the case with a mixture of long-lived and short-
lived flows over general topology. Moreover, as shown by
recent measurement studies such as [89], the dominant
traffic in the current Internet is P2P traffic and video
traffic. It is important to study how these application-
layer changes interact with and affect the basic NUM
model.

7.3. Constraint-level dynamics

One of the major sources that lead to disruptive dynamics
at constraint-level is variation in network topology. For
example, topology of wireless ad hoc networks can
change due to mobility of nodes, sleep mode and battery
power depletion. Solving generalised NUM problems over
networks with randomly varying topologies remains an
under-explored area, with little known results on models
or methodologies. In some cases, topology-level dynamics
can be assumed to be exogenous factors (similar to channel-
level dynamics) that is independent of the NUM solutions.
The problem becomes even more challenging when there
is a coupling between NUM and topology-level stochastic.
For example, topology may be varying because of battery
depletion, which depend on the pattern of battery usage,
which is in turn determined by the solution of the NUM
problem itself.

8. CONCLUSION

To understand utility maximisation in a stochastic network
requires the formulations and solutions of a wide range
of new questions. These range from proving session-level
stability of NUM to maximising utility subject to stability,
from validating deterministic fluid models to exploiting
network randomness, and from translating application layer
burstiness to NUM models to using robustness against
stochastic noise as a metric for comparison of alternative
timescales. Interesting progress has been made on these
issues since the introduction of NUM by Kelly as a
fresh view on thinking about networking 10 years ago,
and much more remains to be studied. Hopefully, in the
future, tractability of the models and applicability of the
subsequent results can be maintained simultaneously in a
union between stochastic network theory and distributed
optimisation theory.
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